基于巯基-烯基点击反应的改性负载壳聚糖吸附剂及其对铅(II)的吸附研究

IF 0.5 4区 化学 Q4 CHEMISTRY, ANALYTICAL
Shuqin Zhang, Kening Zhang, Yi Liu, Dajun Ren, Xiaoqing Zhang
{"title":"基于巯基-烯基点击反应的改性负载壳聚糖吸附剂及其对铅(II)的吸附研究","authors":"Shuqin Zhang,&nbsp;Kening Zhang,&nbsp;Yi Liu,&nbsp;Dajun Ren,&nbsp;Xiaoqing Zhang","doi":"10.3103/S1063455X24030111","DOIUrl":null,"url":null,"abstract":"<p>Industrialization has caused serious heavy metal pollution in water resources, which is harmful to human health. It is of great significance to use heavy metal removal technology to ensure water safety. In this study, a new kaolin/chitosan composite (TGL-CS) was prepared for the adsorption of lead-containing wastewater based on the mercapto-alkenyl base reaction strategy. The effects of pH, adsorbent dosage and ionic strength on the adsorption performance of TGL-CS were investigated. The adsorption process of Pb(II) on TGL-CS is consistent with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum adsorption capacity of TGL-CS for Pb(II) was 87.72 mg/g. The adsorption mechanism of TGL-CS is mainly the coordination between Pb(II) and hydroxyl, amino and sulfur-containing groups. In particular, the click chemical reaction does not consume the amino group in chitosan but also introduces the sulfur-containing group to improve the adsorption capacity of heavy metals. In addition, the ionic strength in the environment system has little effect on the adsorption of Pb(II) by TGL-CS, and the reusability of TGL-CS is high. In summary, TGL-CS has the advantages of low cost, simple preparation, and broad application prospects in the treatment of heavy metal-polluted water bodies.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":"46 3","pages":"252 - 265"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Modified Loaded Chitosan Adsorbent Based on Mercapto-alkenyl Click Reaction and Adsorption of Pb(II)\",\"authors\":\"Shuqin Zhang,&nbsp;Kening Zhang,&nbsp;Yi Liu,&nbsp;Dajun Ren,&nbsp;Xiaoqing Zhang\",\"doi\":\"10.3103/S1063455X24030111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Industrialization has caused serious heavy metal pollution in water resources, which is harmful to human health. It is of great significance to use heavy metal removal technology to ensure water safety. In this study, a new kaolin/chitosan composite (TGL-CS) was prepared for the adsorption of lead-containing wastewater based on the mercapto-alkenyl base reaction strategy. The effects of pH, adsorbent dosage and ionic strength on the adsorption performance of TGL-CS were investigated. The adsorption process of Pb(II) on TGL-CS is consistent with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum adsorption capacity of TGL-CS for Pb(II) was 87.72 mg/g. The adsorption mechanism of TGL-CS is mainly the coordination between Pb(II) and hydroxyl, amino and sulfur-containing groups. In particular, the click chemical reaction does not consume the amino group in chitosan but also introduces the sulfur-containing group to improve the adsorption capacity of heavy metals. In addition, the ionic strength in the environment system has little effect on the adsorption of Pb(II) by TGL-CS, and the reusability of TGL-CS is high. In summary, TGL-CS has the advantages of low cost, simple preparation, and broad application prospects in the treatment of heavy metal-polluted water bodies.</p>\",\"PeriodicalId\":680,\"journal\":{\"name\":\"Journal of Water Chemistry and Technology\",\"volume\":\"46 3\",\"pages\":\"252 - 265\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Chemistry and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063455X24030111\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24030111","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

工业化造成了严重的水资源重金属污染,危害人类健康。利用重金属去除技术确保水质安全具有重要意义。本研究基于巯基-烯基反应策略,制备了一种新型高岭土/壳聚糖复合材料(TGL-CS),用于吸附含铅废水。研究了 pH 值、吸附剂用量和离子强度对 TGL-CS 吸附性能的影响。Pb(II) 在 TGL-CS 上的吸附过程符合 Langmuir 等温线和伪二阶动力学模型。TGL-CS 对铅(II)的最大吸附容量为 87.72 mg/g。TGL-CS 的吸附机理主要是 Pb(II) 与羟基、氨基和含硫基团之间的配位。其中,点击化学反应不仅不消耗壳聚糖中的氨基,还引入了含硫基团,从而提高了对重金属的吸附能力。此外,环境体系中的离子强度对 TGL-CS 吸附铅(II)的影响很小,而且 TGL-CS 的重复利用率很高。总之,TGL-CS 具有成本低、制备简单等优点,在重金属污染水体处理方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on Modified Loaded Chitosan Adsorbent Based on Mercapto-alkenyl Click Reaction and Adsorption of Pb(II)

Study on Modified Loaded Chitosan Adsorbent Based on Mercapto-alkenyl Click Reaction and Adsorption of Pb(II)

Study on Modified Loaded Chitosan Adsorbent Based on Mercapto-alkenyl Click Reaction and Adsorption of Pb(II)

Industrialization has caused serious heavy metal pollution in water resources, which is harmful to human health. It is of great significance to use heavy metal removal technology to ensure water safety. In this study, a new kaolin/chitosan composite (TGL-CS) was prepared for the adsorption of lead-containing wastewater based on the mercapto-alkenyl base reaction strategy. The effects of pH, adsorbent dosage and ionic strength on the adsorption performance of TGL-CS were investigated. The adsorption process of Pb(II) on TGL-CS is consistent with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum adsorption capacity of TGL-CS for Pb(II) was 87.72 mg/g. The adsorption mechanism of TGL-CS is mainly the coordination between Pb(II) and hydroxyl, amino and sulfur-containing groups. In particular, the click chemical reaction does not consume the amino group in chitosan but also introduces the sulfur-containing group to improve the adsorption capacity of heavy metals. In addition, the ionic strength in the environment system has little effect on the adsorption of Pb(II) by TGL-CS, and the reusability of TGL-CS is high. In summary, TGL-CS has the advantages of low cost, simple preparation, and broad application prospects in the treatment of heavy metal-polluted water bodies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water Chemistry and Technology
Journal of Water Chemistry and Technology CHEMISTRY, APPLIED-CHEMISTRY, ANALYTICAL
自引率
0.00%
发文量
51
审稿时长
>12 weeks
期刊介绍: Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信