通过均方差浅水方程对城市洪水淹没进行宏观建模

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES
Alok Kumar, Gourabananda Pahar
{"title":"通过均方差浅水方程对城市洪水淹没进行宏观建模","authors":"Alok Kumar,&nbsp;Gourabananda Pahar","doi":"10.1016/j.advwatres.2024.104755","DOIUrl":null,"url":null,"abstract":"<div><p>An areal-averaged form of classical Shallow-Water-Equations is developed in conjunction with Finite-Volume-Method for capturing sub-grid bed variation. The averaging mechanism treats sub-grid obstacles through depth-dependent-area-averaged porosity at the macroscopic level. This porosity assumes a binary distribution (0,1) for a resolution fine enough to treat bed-variation separately, resulting in convergence of the developed framework to classical form. An attempt has been made to incorporate the unresolved fine-scale flow-information (e.g., micro-scale and cross-scale interaction components) in terms of the macroscopic variables through a non-linear closure model. An augmented approximated Riemann solver incorporates varying source–sink terms within interfacial fluxes along with discontinuous porosity and bed variation. The model is applied to three test-cases ranging from wave-interaction with trapezoidal porous block to dam-break flows through obstacle(s) with varying grid configurations. The coarse-scale formulation, along with closure, produces a reasonably accurate solution with minimal computational overhead.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104755"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macroscopic modeling of urban flood inundation through areal-averaged Shallow-Water-Equations\",\"authors\":\"Alok Kumar,&nbsp;Gourabananda Pahar\",\"doi\":\"10.1016/j.advwatres.2024.104755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An areal-averaged form of classical Shallow-Water-Equations is developed in conjunction with Finite-Volume-Method for capturing sub-grid bed variation. The averaging mechanism treats sub-grid obstacles through depth-dependent-area-averaged porosity at the macroscopic level. This porosity assumes a binary distribution (0,1) for a resolution fine enough to treat bed-variation separately, resulting in convergence of the developed framework to classical form. An attempt has been made to incorporate the unresolved fine-scale flow-information (e.g., micro-scale and cross-scale interaction components) in terms of the macroscopic variables through a non-linear closure model. An augmented approximated Riemann solver incorporates varying source–sink terms within interfacial fluxes along with discontinuous porosity and bed variation. The model is applied to three test-cases ranging from wave-interaction with trapezoidal porous block to dam-break flows through obstacle(s) with varying grid configurations. The coarse-scale formulation, along with closure, produces a reasonably accurate solution with minimal computational overhead.</p></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"190 \",\"pages\":\"Article 104755\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824001428\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001428","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

结合有限体积法(Finite-Volume-Method)开发了一种经典浅水方程的面积平均形式,用于捕捉床层的次网格变化。平均机制通过宏观层面上与深度相关的面积平均孔隙度来处理次网格障碍。这种孔隙度假设为二元分布(0,1),分辨率足够精细,可以单独处理床层变化,从而使所开发的框架趋近于经典形式。通过非线性闭合模型,尝试将未解决的细尺度流动信息(如微尺度和跨尺度相互作用成分)纳入宏观变量。一个增强的近似黎曼求解器在界面通量中加入了不同的源汇项,以及不连续的孔隙度和床层变化。该模型应用于三个测试案例,从波浪与梯形多孔块体的相互作用到通过不同网格配置的障碍物的溃坝流。粗尺度公式和闭合方法以最小的计算开销获得了相当精确的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macroscopic modeling of urban flood inundation through areal-averaged Shallow-Water-Equations

An areal-averaged form of classical Shallow-Water-Equations is developed in conjunction with Finite-Volume-Method for capturing sub-grid bed variation. The averaging mechanism treats sub-grid obstacles through depth-dependent-area-averaged porosity at the macroscopic level. This porosity assumes a binary distribution (0,1) for a resolution fine enough to treat bed-variation separately, resulting in convergence of the developed framework to classical form. An attempt has been made to incorporate the unresolved fine-scale flow-information (e.g., micro-scale and cross-scale interaction components) in terms of the macroscopic variables through a non-linear closure model. An augmented approximated Riemann solver incorporates varying source–sink terms within interfacial fluxes along with discontinuous porosity and bed variation. The model is applied to three test-cases ranging from wave-interaction with trapezoidal porous block to dam-break flows through obstacle(s) with varying grid configurations. The coarse-scale formulation, along with closure, produces a reasonably accurate solution with minimal computational overhead.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信