{"title":"层适应网格上三阶奇异扰动对流扩散微分方程的高效弱 Galerkin 有限元模型","authors":"Suayip Toprakseven , Natesan Srinivasan","doi":"10.1016/j.apnum.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the weak Galerkin finite element method to solve a class of a third order singularly perturbed convection-diffusion differential equations. Using some knowledge on the exact solution, we prove a robust uniform convergence of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> on the layer-adapted meshes including Bakhvalov-Shishkin type, and Bakhvalov-type and almost optimal uniform error estimates of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>ln</mi><mo></mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> on Shishkin-type mesh with respect to the perturbation parameter in the energy norm using high-order piecewise discontinuous polynomials of degree <em>k</em>. Here <em>N</em> is the number mesh intervals. We conduct numerical examples to support our theoretical results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient weak Galerkin FEM for third-order singularly perturbed convection-diffusion differential equations on layer-adapted meshes\",\"authors\":\"Suayip Toprakseven , Natesan Srinivasan\",\"doi\":\"10.1016/j.apnum.2024.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we study the weak Galerkin finite element method to solve a class of a third order singularly perturbed convection-diffusion differential equations. Using some knowledge on the exact solution, we prove a robust uniform convergence of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> on the layer-adapted meshes including Bakhvalov-Shishkin type, and Bakhvalov-type and almost optimal uniform error estimates of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>ln</mi><mo></mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> on Shishkin-type mesh with respect to the perturbation parameter in the energy norm using high-order piecewise discontinuous polynomials of degree <em>k</em>. Here <em>N</em> is the number mesh intervals. We conduct numerical examples to support our theoretical results.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
An efficient weak Galerkin FEM for third-order singularly perturbed convection-diffusion differential equations on layer-adapted meshes
In this article, we study the weak Galerkin finite element method to solve a class of a third order singularly perturbed convection-diffusion differential equations. Using some knowledge on the exact solution, we prove a robust uniform convergence of order on the layer-adapted meshes including Bakhvalov-Shishkin type, and Bakhvalov-type and almost optimal uniform error estimates of order on Shishkin-type mesh with respect to the perturbation parameter in the energy norm using high-order piecewise discontinuous polynomials of degree k. Here N is the number mesh intervals. We conduct numerical examples to support our theoretical results.