{"title":"一种近乎平行的 G 型结构","authors":"Kamil Niedziałomski","doi":"10.1016/j.geomphys.2024.105256","DOIUrl":null,"url":null,"abstract":"<div><p>We study properties of a certain symmetric tensor <em>r</em> induced by the intrinsic torsion of a Riemannian <em>G</em>–structure. This tensor naturally arises in the context of nearly Kähler manifolds and is parallel with respect to the canonical Hermitian connection. In general, we call a G-structure a second order parallel if <span><math><msup><mrow><mi>∇</mi></mrow><mrow><mi>G</mi></mrow></msup><mi>r</mi><mo>=</mo><mn>0</mn></math></span> for a minimal <em>G</em>–connection <span><math><msup><mrow><mi>∇</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span>. We show correlation with harmonicity of a <em>G</em>–structure and with <em>G</em>–structures with parallel torsion. An example of second order parallel <em>G</em>–structure is, apart from nearly Kähler manifolds and nearly parallel <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures, an <em>α</em>-Kenmotsu manifold.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A type of nearly parallel G-structures\",\"authors\":\"Kamil Niedziałomski\",\"doi\":\"10.1016/j.geomphys.2024.105256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study properties of a certain symmetric tensor <em>r</em> induced by the intrinsic torsion of a Riemannian <em>G</em>–structure. This tensor naturally arises in the context of nearly Kähler manifolds and is parallel with respect to the canonical Hermitian connection. In general, we call a G-structure a second order parallel if <span><math><msup><mrow><mi>∇</mi></mrow><mrow><mi>G</mi></mrow></msup><mi>r</mi><mo>=</mo><mn>0</mn></math></span> for a minimal <em>G</em>–connection <span><math><msup><mrow><mi>∇</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span>. We show correlation with harmonicity of a <em>G</em>–structure and with <em>G</em>–structures with parallel torsion. An example of second order parallel <em>G</em>–structure is, apart from nearly Kähler manifolds and nearly parallel <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures, an <em>α</em>-Kenmotsu manifold.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001578\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001578","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了由黎曼 G 结构的内在扭转诱导的某种对称张量 r 的性质。这个张量在近凯勒流形的背景下自然产生,并且相对于典型赫米特连接是平行的。一般来说,如果∇Gr=0 表示一个最小的 G-连接∇G,我们就称该 G-结构为二阶平行结构。我们展示了 G-结构的调和性与平行扭转的 G-结构之间的相关性。除了近乎凯勒流形和近乎平行的 G2 结构之外,二阶平行 G 结构的一个例子是 α-Kenmotsu 流形。
We study properties of a certain symmetric tensor r induced by the intrinsic torsion of a Riemannian G–structure. This tensor naturally arises in the context of nearly Kähler manifolds and is parallel with respect to the canonical Hermitian connection. In general, we call a G-structure a second order parallel if for a minimal G–connection . We show correlation with harmonicity of a G–structure and with G–structures with parallel torsion. An example of second order parallel G–structure is, apart from nearly Kähler manifolds and nearly parallel structures, an α-Kenmotsu manifold.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity