Joseph Heng , Samuel Bechard , David Lach , Jonathan Rothstein , Minghe Wang , Sebastian Ubal , David Julian McClements , Carlos M. Corvalan , Jiakai Lu
{"title":"评估精油作为生物杀灭剂的抗漂移佐剂,以实现安全、可持续的农业喷雾增效","authors":"Joseph Heng , Samuel Bechard , David Lach , Jonathan Rothstein , Minghe Wang , Sebastian Ubal , David Julian McClements , Carlos M. Corvalan , Jiakai Lu","doi":"10.1016/j.jaerosci.2024.106421","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional agrichemical formulations are often composed of synthetic ingredients that may exhibit adverse environmental and health effects. Losses from spray drift mean that these potentially toxic ingredients can contaminate the environment and pose significant risks to human health. There is therefore a need for natural ingredients to formulate agrichemical sprays that are non-toxic to humans and less harmful to the environment to ensure greater safety and sustainability. Essential oils are promising candidates as natural biopesticides, but their application is limited due to their phytotoxicity at biocidal-effective dosages. A novel alternative approach utilizes essential oils as dilute oil-in-water emulsion spray adjuvants. This strategy can potentially reduce the usage of conventional pesticide ingredients by synergistically enhancing their effectiveness and reducing losses from spray drift. In this study, we evaluated the anti-drift potential of using plant-derived essential oils and quillaja saponin (a natural surfactant) to prepare dilute oil-in-water emulsions for use as safe and sustainable agrichemical adjuvants. In this study, we evaluated the potential of plant-derived essential oils and quillaja saponin, a natural surfactant, to create dilute oil-in-water emulsions as safe and sustainable agrichemical adjuvants. We found that emulsions made with methylated seed oil (MSO) and quillaja saponin showed similar drift reduction performance to those made with MSO and Tween 80, a synthetic non-ionic surfactant. Carvacrol (oregano and thyme essential oil) in water emulsion was found to increase the spray droplet size, thereby making it a promising ingredient for drift reduction. However, we found that limonene (citrus fruits essential oil) in water emulsion had no drift reduction abilities at the same specifications. The different performances of the two essential oils likely arise from differences in their physicochemical properties, which influence the spray atomization mechanism, specifically the ability of the oil droplets entering and spreading on the water–air interface to form perforations.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106421"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating essential oils as biocidal anti-drift adjuvants for safe and sustainable agricultural spray enhancement\",\"authors\":\"Joseph Heng , Samuel Bechard , David Lach , Jonathan Rothstein , Minghe Wang , Sebastian Ubal , David Julian McClements , Carlos M. Corvalan , Jiakai Lu\",\"doi\":\"10.1016/j.jaerosci.2024.106421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional agrichemical formulations are often composed of synthetic ingredients that may exhibit adverse environmental and health effects. Losses from spray drift mean that these potentially toxic ingredients can contaminate the environment and pose significant risks to human health. There is therefore a need for natural ingredients to formulate agrichemical sprays that are non-toxic to humans and less harmful to the environment to ensure greater safety and sustainability. Essential oils are promising candidates as natural biopesticides, but their application is limited due to their phytotoxicity at biocidal-effective dosages. A novel alternative approach utilizes essential oils as dilute oil-in-water emulsion spray adjuvants. This strategy can potentially reduce the usage of conventional pesticide ingredients by synergistically enhancing their effectiveness and reducing losses from spray drift. In this study, we evaluated the anti-drift potential of using plant-derived essential oils and quillaja saponin (a natural surfactant) to prepare dilute oil-in-water emulsions for use as safe and sustainable agrichemical adjuvants. In this study, we evaluated the potential of plant-derived essential oils and quillaja saponin, a natural surfactant, to create dilute oil-in-water emulsions as safe and sustainable agrichemical adjuvants. We found that emulsions made with methylated seed oil (MSO) and quillaja saponin showed similar drift reduction performance to those made with MSO and Tween 80, a synthetic non-ionic surfactant. Carvacrol (oregano and thyme essential oil) in water emulsion was found to increase the spray droplet size, thereby making it a promising ingredient for drift reduction. However, we found that limonene (citrus fruits essential oil) in water emulsion had no drift reduction abilities at the same specifications. The different performances of the two essential oils likely arise from differences in their physicochemical properties, which influence the spray atomization mechanism, specifically the ability of the oil droplets entering and spreading on the water–air interface to form perforations.</p></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":\"181 \",\"pages\":\"Article 106421\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021850224000880\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224000880","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Evaluating essential oils as biocidal anti-drift adjuvants for safe and sustainable agricultural spray enhancement
Traditional agrichemical formulations are often composed of synthetic ingredients that may exhibit adverse environmental and health effects. Losses from spray drift mean that these potentially toxic ingredients can contaminate the environment and pose significant risks to human health. There is therefore a need for natural ingredients to formulate agrichemical sprays that are non-toxic to humans and less harmful to the environment to ensure greater safety and sustainability. Essential oils are promising candidates as natural biopesticides, but their application is limited due to their phytotoxicity at biocidal-effective dosages. A novel alternative approach utilizes essential oils as dilute oil-in-water emulsion spray adjuvants. This strategy can potentially reduce the usage of conventional pesticide ingredients by synergistically enhancing their effectiveness and reducing losses from spray drift. In this study, we evaluated the anti-drift potential of using plant-derived essential oils and quillaja saponin (a natural surfactant) to prepare dilute oil-in-water emulsions for use as safe and sustainable agrichemical adjuvants. In this study, we evaluated the potential of plant-derived essential oils and quillaja saponin, a natural surfactant, to create dilute oil-in-water emulsions as safe and sustainable agrichemical adjuvants. We found that emulsions made with methylated seed oil (MSO) and quillaja saponin showed similar drift reduction performance to those made with MSO and Tween 80, a synthetic non-ionic surfactant. Carvacrol (oregano and thyme essential oil) in water emulsion was found to increase the spray droplet size, thereby making it a promising ingredient for drift reduction. However, we found that limonene (citrus fruits essential oil) in water emulsion had no drift reduction abilities at the same specifications. The different performances of the two essential oils likely arise from differences in their physicochemical properties, which influence the spray atomization mechanism, specifically the ability of the oil droplets entering and spreading on the water–air interface to form perforations.
期刊介绍:
Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences.
The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics:
1. Fundamental Aerosol Science.
2. Applied Aerosol Science.
3. Instrumentation & Measurement Methods.