{"title":"显示法布里-佩罗激光的柔性防水竹节状包覆过氧化物聚合物纳米/微纤维","authors":"Hsin-Ming Cheng, You-Jia Pang, Chia-Kai Lin, Sheng‐Chan Wu, Bo-Zhu You, Jung‐Yao Chen, Hsu-Cheng Hsu","doi":"10.1063/5.0200465","DOIUrl":null,"url":null,"abstract":"Methylammonium lead bromide perovskite (MAPbBr3)-embedded nano- and micro-fibers are successfully fabricated by using the uniaxial electrospinning technique. Through the study of solidification and coordination between perovskite with hybrid polymers, polymethyl methacrylate, and polyacrylonitrile, the bamboo-like perovskite-embedded polymer nano/microfibers are unpredictably formed. Encapsulated in polymer, the passive perovskite-embedded polymer fibers exhibit a long-term fluorescence performance when simultaneously exposed to both water immersion and short-wavelength laser irradiation. Notably, due to the efficient gain media, the perovskite-rich region of the electrospun fiber can act as an optical microcavity. Multi-mode and single-mode lasing behaviors can be achieved via different cavity lengths. The mechanism of a microlaser within this perovskite fiber is confirmed through a Fabry–Pérot cavity, which provides an opportunity for optical components in lasers.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible water-resistant bamboo-like perovskite-embedded polymer nano/microfibers exhibiting Fabry–Pérot lasing\",\"authors\":\"Hsin-Ming Cheng, You-Jia Pang, Chia-Kai Lin, Sheng‐Chan Wu, Bo-Zhu You, Jung‐Yao Chen, Hsu-Cheng Hsu\",\"doi\":\"10.1063/5.0200465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methylammonium lead bromide perovskite (MAPbBr3)-embedded nano- and micro-fibers are successfully fabricated by using the uniaxial electrospinning technique. Through the study of solidification and coordination between perovskite with hybrid polymers, polymethyl methacrylate, and polyacrylonitrile, the bamboo-like perovskite-embedded polymer nano/microfibers are unpredictably formed. Encapsulated in polymer, the passive perovskite-embedded polymer fibers exhibit a long-term fluorescence performance when simultaneously exposed to both water immersion and short-wavelength laser irradiation. Notably, due to the efficient gain media, the perovskite-rich region of the electrospun fiber can act as an optical microcavity. Multi-mode and single-mode lasing behaviors can be achieved via different cavity lengths. The mechanism of a microlaser within this perovskite fiber is confirmed through a Fabry–Pérot cavity, which provides an opportunity for optical components in lasers.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0200465\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0200465","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Methylammonium lead bromide perovskite (MAPbBr3)-embedded nano- and micro-fibers are successfully fabricated by using the uniaxial electrospinning technique. Through the study of solidification and coordination between perovskite with hybrid polymers, polymethyl methacrylate, and polyacrylonitrile, the bamboo-like perovskite-embedded polymer nano/microfibers are unpredictably formed. Encapsulated in polymer, the passive perovskite-embedded polymer fibers exhibit a long-term fluorescence performance when simultaneously exposed to both water immersion and short-wavelength laser irradiation. Notably, due to the efficient gain media, the perovskite-rich region of the electrospun fiber can act as an optical microcavity. Multi-mode and single-mode lasing behaviors can be achieved via different cavity lengths. The mechanism of a microlaser within this perovskite fiber is confirmed through a Fabry–Pérot cavity, which provides an opportunity for optical components in lasers.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.