SCRaMbLE 诱导的野生型染色体染色体间插入

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Sijie Zhou, Junyanrui Li, Xichen Cui, Ying Wang, Ying-Jin Yuan
{"title":"SCRaMbLE 诱导的野生型染色体染色体间插入","authors":"Sijie Zhou,&nbsp;Junyanrui Li,&nbsp;Xichen Cui,&nbsp;Ying Wang,&nbsp;Ying-Jin Yuan","doi":"10.1007/s11705-024-2458-5","DOIUrl":null,"url":null,"abstract":"<div><p>Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution. Synthetic chromosome rearrangement and modification by LoxP-mediated evolution (SCRaMbLE) has been applied to explore large-scale genomic rearrangements, yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites. Here, we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes, ranging from 1 to 300 kb. Furthermore, it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin. Collectively, our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE\",\"authors\":\"Sijie Zhou,&nbsp;Junyanrui Li,&nbsp;Xichen Cui,&nbsp;Ying Wang,&nbsp;Ying-Jin Yuan\",\"doi\":\"10.1007/s11705-024-2458-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution. Synthetic chromosome rearrangement and modification by LoxP-mediated evolution (SCRaMbLE) has been applied to explore large-scale genomic rearrangements, yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites. Here, we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes, ranging from 1 to 300 kb. Furthermore, it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin. Collectively, our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2458-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2458-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

基因组重排在形成生物表型多样性和驱动物种进化方面起着至关重要的作用。由 LoxP 介导的合成染色体重排和修饰进化(SCRaMbLE)已被用于探索大规模的基因组重排,然而据观察,这些重排只发生在含有 loxPsym 位点的基因组区域。在这里,我们发现对携带合成染色体 V 和 X 的合成酵母进行 SCRaMbLE 可在野生型染色体上产生各种合成片段插入,范围从 1 kb 到 300 kb 不等。此外,研究还发现,新插入的片段会影响邻近区域的转录水平,并影响玉米黄质模范途径的产生。总之,我们的研究结果加深了人们对 SCRaMbLE 在非合成区域产生复杂结构变异的能力的理解,并为探索基因组转座事件提供了一个潜在的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE

Inter-chromosomal insertions into wild-type chromosomes induced by SCRaMbLE

Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution. Synthetic chromosome rearrangement and modification by LoxP-mediated evolution (SCRaMbLE) has been applied to explore large-scale genomic rearrangements, yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites. Here, we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes, ranging from 1 to 300 kb. Furthermore, it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin. Collectively, our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信