用于净化生产场所空气环境的电动过滤器分析

A. Vozmilov, R. Ilimbetov, S. Panishev, A. Lisov
{"title":"用于净化生产场所空气环境的电动过滤器分析","authors":"A. Vozmilov, R. Ilimbetov, S. Panishev, A. Lisov","doi":"10.30724/1998-9903-2024-26-2-78-96","DOIUrl":null,"url":null,"abstract":"RELEVANCE: The problem of hazardous working conditions in Russia attracts attention due to an increase in the proportion of workers exposed to negative impacts on their health. Of particular interest is the analysis of the air environment as the main factor influencing human health. 32.2% of workers in hazardous working conditions are exposed to airborne factors, which leads to occupational diseases. To reduce the harmful effects of the air, it is necessary to clean it from harmful components. A promising device for air purification is an electric precipitator.PURPOSE: The study is aimed at selecting and optimizing electric precipitators for air purification in industrial premises. The goal is to determine the most effective design of an electric precipitator for cleaning the air environment of industrial premises.METHODS: The analysis is carried out on the basis of statistical data, the results of studies of electric precipitators of various designs for cleaning the air from dust, harmful gases and microorganisms. The results are used for comparative analysis.RESULTS: The study reveals that different designs of electrostatic precipitators demonstrate different effectiveness in air purification depending on the type of design. The design of corona electrodes affects ozone generation. It has been established that two-zone electrostatic precipitators with needle corona electrodes on the negative corona can significantly reduce ozone emissions. Wet electrostatic precipitators have regeneration, and the presence of several stages increases the cleaning efficiency. Electrostatic filters do not generate ozone and can be used in explosive low-volume areas.CONCLUSION: The study confirms that the choice of electrostatic precipitator should depend on the specifics of production and the volume of the room. For explosive environments, electrostatic precipitators should be preferred, while for large areas, a wet multi-stage electrostatic precipitator is recommended. Electrostatic precipitators-ozonizers can be effective for air disinfection. Summarizing the results allows us to conclude that it is important to choose the appropriate type of electrostatic precipitator to ensure optimal air conditions for the safety of workers.","PeriodicalId":222237,"journal":{"name":"Power engineering: research, equipment, technology","volume":"28 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of electric filters for cleaning the air environment of production premises\",\"authors\":\"A. Vozmilov, R. Ilimbetov, S. Panishev, A. Lisov\",\"doi\":\"10.30724/1998-9903-2024-26-2-78-96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RELEVANCE: The problem of hazardous working conditions in Russia attracts attention due to an increase in the proportion of workers exposed to negative impacts on their health. Of particular interest is the analysis of the air environment as the main factor influencing human health. 32.2% of workers in hazardous working conditions are exposed to airborne factors, which leads to occupational diseases. To reduce the harmful effects of the air, it is necessary to clean it from harmful components. A promising device for air purification is an electric precipitator.PURPOSE: The study is aimed at selecting and optimizing electric precipitators for air purification in industrial premises. The goal is to determine the most effective design of an electric precipitator for cleaning the air environment of industrial premises.METHODS: The analysis is carried out on the basis of statistical data, the results of studies of electric precipitators of various designs for cleaning the air from dust, harmful gases and microorganisms. The results are used for comparative analysis.RESULTS: The study reveals that different designs of electrostatic precipitators demonstrate different effectiveness in air purification depending on the type of design. The design of corona electrodes affects ozone generation. It has been established that two-zone electrostatic precipitators with needle corona electrodes on the negative corona can significantly reduce ozone emissions. Wet electrostatic precipitators have regeneration, and the presence of several stages increases the cleaning efficiency. Electrostatic filters do not generate ozone and can be used in explosive low-volume areas.CONCLUSION: The study confirms that the choice of electrostatic precipitator should depend on the specifics of production and the volume of the room. For explosive environments, electrostatic precipitators should be preferred, while for large areas, a wet multi-stage electrostatic precipitator is recommended. Electrostatic precipitators-ozonizers can be effective for air disinfection. Summarizing the results allows us to conclude that it is important to choose the appropriate type of electrostatic precipitator to ensure optimal air conditions for the safety of workers.\",\"PeriodicalId\":222237,\"journal\":{\"name\":\"Power engineering: research, equipment, technology\",\"volume\":\"28 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Power engineering: research, equipment, technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30724/1998-9903-2024-26-2-78-96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power engineering: research, equipment, technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30724/1998-9903-2024-26-2-78-96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相关性:由于受到健康负面影响的工人比例增加,俄罗斯的危险工作条件问题备受关注。特别值得关注的是对影响人类健康的主要因素--空气环境的分析。32.2% 在危险工作环境中工作的工人暴露在空气中,从而导致职业病。为了减少空气的有害影响,有必要净化空气中的有害成分。目的:本研究旨在选择和优化用于工业场所空气净化的电除尘器。方法:分析是在统计数据、各种设计的电除尘器研究结果的基础上进行的,这些电除尘器用于净化空气中的灰尘、有害气体和微生物。结果:研究表明,不同设计的静电除尘器在空气净化方面表现出不同的效果,具体取决于设计类型。电晕电极的设计会影响臭氧的生成。已经证实,在负电晕上使用针状电晕电极的双区静电除尘器可显著减少臭氧排放。湿式静电除尘器具有再生功能,多个阶段的存在提高了清洁效率。结论:研究证实,静电除尘器的选择应取决于生产的具体情况和房间的容积。对于易爆环境,应首选静电除尘器,而对于大面积区域,则建议使用湿式多级静电除尘器。静电除尘器-臭氧发生器可以有效地进行空气消毒。综上所述,我们可以得出结论:选择适当类型的静电除尘器对确保工人安全的最佳空气条件非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of electric filters for cleaning the air environment of production premises
RELEVANCE: The problem of hazardous working conditions in Russia attracts attention due to an increase in the proportion of workers exposed to negative impacts on their health. Of particular interest is the analysis of the air environment as the main factor influencing human health. 32.2% of workers in hazardous working conditions are exposed to airborne factors, which leads to occupational diseases. To reduce the harmful effects of the air, it is necessary to clean it from harmful components. A promising device for air purification is an electric precipitator.PURPOSE: The study is aimed at selecting and optimizing electric precipitators for air purification in industrial premises. The goal is to determine the most effective design of an electric precipitator for cleaning the air environment of industrial premises.METHODS: The analysis is carried out on the basis of statistical data, the results of studies of electric precipitators of various designs for cleaning the air from dust, harmful gases and microorganisms. The results are used for comparative analysis.RESULTS: The study reveals that different designs of electrostatic precipitators demonstrate different effectiveness in air purification depending on the type of design. The design of corona electrodes affects ozone generation. It has been established that two-zone electrostatic precipitators with needle corona electrodes on the negative corona can significantly reduce ozone emissions. Wet electrostatic precipitators have regeneration, and the presence of several stages increases the cleaning efficiency. Electrostatic filters do not generate ozone and can be used in explosive low-volume areas.CONCLUSION: The study confirms that the choice of electrostatic precipitator should depend on the specifics of production and the volume of the room. For explosive environments, electrostatic precipitators should be preferred, while for large areas, a wet multi-stage electrostatic precipitator is recommended. Electrostatic precipitators-ozonizers can be effective for air disinfection. Summarizing the results allows us to conclude that it is important to choose the appropriate type of electrostatic precipitator to ensure optimal air conditions for the safety of workers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信