将生物合成的 CdS 与工程化的古朴红假单胞菌(Rhodopseudomonas palustris)结合起来,实现可见光驱动的 CO2-CH4 高效转化

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Yu Zhang, Yulei Qian, Zhenye Tong, Su Yan, Xiaoyu Yong, Yang-Chun Yong, Jun Zhou
{"title":"将生物合成的 CdS 与工程化的古朴红假单胞菌(Rhodopseudomonas palustris)结合起来,实现可见光驱动的 CO2-CH4 高效转化","authors":"Yu Zhang,&nbsp;Yulei Qian,&nbsp;Zhenye Tong,&nbsp;Su Yan,&nbsp;Xiaoyu Yong,&nbsp;Yang-Chun Yong,&nbsp;Jun Zhou","doi":"10.1007/s11705-024-2460-y","DOIUrl":null,"url":null,"abstract":"<div><p>Engineered photosynthetic bacterium <i>Rhodo-pseudomonas palustris</i> is excellent at one-step CO<sub>2</sub> biomethanation and can use near-infrared light sources, overcoming the limitations of conventional photosynthetic systems. The current study constructed a biohybrid system that deposited CdS nanoparticles on <i>R. palustris</i>. This biohybrid system broadens the capture of sustainable solar energy, achieving a 155 nmol·mL<sup>−1</sup> biological CH<sub>4</sub> production under full visible light irradiation, 13.4-fold of that by the pure <i>R. palustris</i>. The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain, nitrogenase, nanofilaments, and redox stress defense was activated. Accordingly, we attributed the much-enhanced CO<sub>2</sub> biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles. Our discovery offers insight and a promising strategy for improving the current CO<sub>2</sub>–CH<sub>4</sub> biomanufacturing system.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion\",\"authors\":\"Yu Zhang,&nbsp;Yulei Qian,&nbsp;Zhenye Tong,&nbsp;Su Yan,&nbsp;Xiaoyu Yong,&nbsp;Yang-Chun Yong,&nbsp;Jun Zhou\",\"doi\":\"10.1007/s11705-024-2460-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Engineered photosynthetic bacterium <i>Rhodo-pseudomonas palustris</i> is excellent at one-step CO<sub>2</sub> biomethanation and can use near-infrared light sources, overcoming the limitations of conventional photosynthetic systems. The current study constructed a biohybrid system that deposited CdS nanoparticles on <i>R. palustris</i>. This biohybrid system broadens the capture of sustainable solar energy, achieving a 155 nmol·mL<sup>−1</sup> biological CH<sub>4</sub> production under full visible light irradiation, 13.4-fold of that by the pure <i>R. palustris</i>. The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain, nitrogenase, nanofilaments, and redox stress defense was activated. Accordingly, we attributed the much-enhanced CO<sub>2</sub> biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles. Our discovery offers insight and a promising strategy for improving the current CO<sub>2</sub>–CH<sub>4</sub> biomanufacturing system.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2460-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2460-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

工程光合细菌 Rodo-pseudomonas palustris 在一步法二氧化碳生物甲烷化方面表现出色,并且可以使用近红外光源,克服了传统光合系统的局限性。本研究构建了一个生物杂交系统,在 R. palustris 上沉积了 CdS 纳米粒子。该生物杂交系统拓宽了对可持续太阳能的捕获,在完全可见光照射下实现了 155 nmol-mL-1 的生物甲烷产量,是纯 R. palustris 产量的 13.4 倍。转录组图谱显示,与光合电子传递链、氮酶、纳米纤维和氧化还原胁迫防御相关的基因表达被激活。因此,我们将生物杂交系统中二氧化碳生物甲烷化能力的大幅提高归因于细胞内还原能力的显著提高,以及在 CdS 纳米粒子的光激发电子帮助下细胞刚性的增强。我们的发现为改进当前的二氧化碳-CH4 生物制造系统提供了启示和有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion

Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion

Engineered photosynthetic bacterium Rhodo-pseudomonas palustris is excellent at one-step CO2 biomethanation and can use near-infrared light sources, overcoming the limitations of conventional photosynthetic systems. The current study constructed a biohybrid system that deposited CdS nanoparticles on R. palustris. This biohybrid system broadens the capture of sustainable solar energy, achieving a 155 nmol·mL−1 biological CH4 production under full visible light irradiation, 13.4-fold of that by the pure R. palustris. The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain, nitrogenase, nanofilaments, and redox stress defense was activated. Accordingly, we attributed the much-enhanced CO2 biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles. Our discovery offers insight and a promising strategy for improving the current CO2–CH4 biomanufacturing system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信