用回收钢纤维和玻璃纤维加固的土工聚合物混凝土的断裂行为研究

Hakan Bayrak, Muhammed Gümüş
{"title":"用回收钢纤维和玻璃纤维加固的土工聚合物混凝土的断裂行为研究","authors":"Hakan Bayrak, Muhammed Gümüş","doi":"10.17780/ksujes.1375200","DOIUrl":null,"url":null,"abstract":"The brittleness of the geopolymer composites is an issue for its widespread use worldwide. Therefore, several types of fibers have been added to the geopolymer mixture to provide a ductile manner. In this work, the recycled steel fibers were employed in a hybrid form with glass fibers to take advantage of the low carbon emission in the production process of recycled steel fibers. The total fiber content was taken as constant 0.6% by volume. Five dissimilar geopolymer batches were handled and two concrete prisms were cast for each batch. Those prisms were tested under three-point loading and the deformed shapes of the specimens’ surface were captured by digital camera to generate the surface displacement field. The fracture characteristics of the notched prisms were criticized in terms of (i) load-CMOD response, (ii) crack progress ahead of the pre-notch, (iii) fracture energy, (iv) ultimate load-bearing capacity, and (v) unstable fracture toughness. Test results revealed that the residual strength, the ultimate load, and the fracture energy of fiber-reinforced geopolymers had a decreasing trend with the increasing recycled steel fiber ratio in the hybrid blend. The reasonable cause of that finding was the heterogeneous distribution of the recycled steel fibers.","PeriodicalId":508025,"journal":{"name":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","volume":"4 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INVESTIGATION OF THE FRACTURE BEHAVIOR OF GEOPOLYMER CONCRETE REINFORCED WITH RECYCLED STEEL AND GLASS FIBERS\",\"authors\":\"Hakan Bayrak, Muhammed Gümüş\",\"doi\":\"10.17780/ksujes.1375200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brittleness of the geopolymer composites is an issue for its widespread use worldwide. Therefore, several types of fibers have been added to the geopolymer mixture to provide a ductile manner. In this work, the recycled steel fibers were employed in a hybrid form with glass fibers to take advantage of the low carbon emission in the production process of recycled steel fibers. The total fiber content was taken as constant 0.6% by volume. Five dissimilar geopolymer batches were handled and two concrete prisms were cast for each batch. Those prisms were tested under three-point loading and the deformed shapes of the specimens’ surface were captured by digital camera to generate the surface displacement field. The fracture characteristics of the notched prisms were criticized in terms of (i) load-CMOD response, (ii) crack progress ahead of the pre-notch, (iii) fracture energy, (iv) ultimate load-bearing capacity, and (v) unstable fracture toughness. Test results revealed that the residual strength, the ultimate load, and the fracture energy of fiber-reinforced geopolymers had a decreasing trend with the increasing recycled steel fiber ratio in the hybrid blend. The reasonable cause of that finding was the heterogeneous distribution of the recycled steel fibers.\",\"PeriodicalId\":508025,\"journal\":{\"name\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"volume\":\"4 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17780/ksujes.1375200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17780/ksujes.1375200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土工聚合物复合材料的脆性是其在全球广泛应用的一个问题。因此,人们在土工聚合物混合物中添加了多种纤维,以提供延展性。在这项工作中,我们采用了回收钢纤维与玻璃纤维的混合形式,以利用回收钢纤维生产过程中的低碳排放优势。纤维总含量按体积恒定为 0.6%。共处理了五批不同的土工聚合物,每批浇注两个混凝土棱柱体。对这些棱柱体进行三点加载试验,并用数码相机捕捉试样表面的变形形状,生成表面位移场。从以下几个方面对有缺口棱柱体的断裂特性进行了分析:(i) 荷载-CMOD 响应;(ii) 预缺口前的裂纹发展;(iii) 断裂能;(iv) 极限承载能力;以及 (v) 不稳定断裂韧性。试验结果表明,纤维增强土工聚合物的残余强度、极限载荷和断裂能随着混合料中再生钢纤维比例的增加而呈下降趋势。造成这一结果的合理原因是再生钢纤维的异质分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVESTIGATION OF THE FRACTURE BEHAVIOR OF GEOPOLYMER CONCRETE REINFORCED WITH RECYCLED STEEL AND GLASS FIBERS
The brittleness of the geopolymer composites is an issue for its widespread use worldwide. Therefore, several types of fibers have been added to the geopolymer mixture to provide a ductile manner. In this work, the recycled steel fibers were employed in a hybrid form with glass fibers to take advantage of the low carbon emission in the production process of recycled steel fibers. The total fiber content was taken as constant 0.6% by volume. Five dissimilar geopolymer batches were handled and two concrete prisms were cast for each batch. Those prisms were tested under three-point loading and the deformed shapes of the specimens’ surface were captured by digital camera to generate the surface displacement field. The fracture characteristics of the notched prisms were criticized in terms of (i) load-CMOD response, (ii) crack progress ahead of the pre-notch, (iii) fracture energy, (iv) ultimate load-bearing capacity, and (v) unstable fracture toughness. Test results revealed that the residual strength, the ultimate load, and the fracture energy of fiber-reinforced geopolymers had a decreasing trend with the increasing recycled steel fiber ratio in the hybrid blend. The reasonable cause of that finding was the heterogeneous distribution of the recycled steel fibers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信