Wishart 和伽马分布下的矩阵变量风险度量

IF 0.9 Q3 BUSINESS, FINANCE
María Andrea Arias-Serna, Francisco José Caro-Lopera, Jean Michel Loubes
{"title":"Wishart 和伽马分布下的矩阵变量风险度量","authors":"María Andrea Arias-Serna,&nbsp;Francisco José Caro-Lopera,&nbsp;Jean Michel Loubes","doi":"10.1002/jcaf.22734","DOIUrl":null,"url":null,"abstract":"<p>Matrix-variate distribution theory has been instrumental across various disciplines for the past seven decades. However, a comprehensive examination of financial literature reveals a notable gap concerning the application of matrix-variate extensions to Value-at-Risk (VaR). However, from a mathematical perspective, the core requirement for VaR lies in determining meaningful percentiles within the context of finance, necessitating the consideration of matrix c.d.f. This paper introduces the concept of “matrix-variate VaR” for both Wishart and Gamma distributions. To achieve this, we leverage the theory of hypergeometric functions of matrix argument and integrate over positive definite matrices. Our proposed approach adeptly characterizes a company's exposure by into a comprehensive risk measure. This facilitates a readily computable estimation of the total incurred risk. Notably, this approach enables efficient computation of risk measures under Wishart, exponential, Erlang, gamma, and chi-square distributions. The resulting risk measures are expressed in closed analytic forms, enhancing their practical utility for day-to-day risk management.</p>","PeriodicalId":44561,"journal":{"name":"Journal of Corporate Accounting and Finance","volume":"36 1","pages":"9-23"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix-variate risk measures under Wishart and gamma distributions\",\"authors\":\"María Andrea Arias-Serna,&nbsp;Francisco José Caro-Lopera,&nbsp;Jean Michel Loubes\",\"doi\":\"10.1002/jcaf.22734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Matrix-variate distribution theory has been instrumental across various disciplines for the past seven decades. However, a comprehensive examination of financial literature reveals a notable gap concerning the application of matrix-variate extensions to Value-at-Risk (VaR). However, from a mathematical perspective, the core requirement for VaR lies in determining meaningful percentiles within the context of finance, necessitating the consideration of matrix c.d.f. This paper introduces the concept of “matrix-variate VaR” for both Wishart and Gamma distributions. To achieve this, we leverage the theory of hypergeometric functions of matrix argument and integrate over positive definite matrices. Our proposed approach adeptly characterizes a company's exposure by into a comprehensive risk measure. This facilitates a readily computable estimation of the total incurred risk. Notably, this approach enables efficient computation of risk measures under Wishart, exponential, Erlang, gamma, and chi-square distributions. The resulting risk measures are expressed in closed analytic forms, enhancing their practical utility for day-to-day risk management.</p>\",\"PeriodicalId\":44561,\"journal\":{\"name\":\"Journal of Corporate Accounting and Finance\",\"volume\":\"36 1\",\"pages\":\"9-23\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Corporate Accounting and Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcaf.22734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Corporate Accounting and Finance","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcaf.22734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

过去七十年来,矩阵变量分布理论在各个学科中都发挥了重要作用。然而,对金融文献的全面研究发现,在将矩阵变量扩展应用于风险价值(VaR)方面存在明显差距。然而,从数学的角度来看,VaR 的核心要求是在金融学的背景下确定有意义的百分位数,这就需要考虑矩阵 c.d.f.。本文针对 Wishart 和 Gamma 分布引入了 "矩阵变量 VaR "的概念。为此,我们利用矩阵参数的超几何函数理论,对正定矩阵进行积分。我们提出的方法通过综合风险度量,巧妙地描述了公司风险敞口的特征。这有助于对总风险进行易于计算的估算。值得注意的是,这种方法能有效计算 Wishart、指数、二郎、伽马和卡方分布下的风险度量。由此得出的风险度量以封闭的解析形式表示,增强了其在日常风险管理中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix-variate risk measures under Wishart and gamma distributions

Matrix-variate distribution theory has been instrumental across various disciplines for the past seven decades. However, a comprehensive examination of financial literature reveals a notable gap concerning the application of matrix-variate extensions to Value-at-Risk (VaR). However, from a mathematical perspective, the core requirement for VaR lies in determining meaningful percentiles within the context of finance, necessitating the consideration of matrix c.d.f. This paper introduces the concept of “matrix-variate VaR” for both Wishart and Gamma distributions. To achieve this, we leverage the theory of hypergeometric functions of matrix argument and integrate over positive definite matrices. Our proposed approach adeptly characterizes a company's exposure by into a comprehensive risk measure. This facilitates a readily computable estimation of the total incurred risk. Notably, this approach enables efficient computation of risk measures under Wishart, exponential, Erlang, gamma, and chi-square distributions. The resulting risk measures are expressed in closed analytic forms, enhancing their practical utility for day-to-day risk management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信