Bipin Wankhede, H. Bisaria, Vinayak Dakre, Sushil K Singh
{"title":"棉纤维增强环氧树脂复合材料在农业应用中机械性能的实验研究","authors":"Bipin Wankhede, H. Bisaria, Vinayak Dakre, Sushil K Singh","doi":"10.1177/14644207241258609","DOIUrl":null,"url":null,"abstract":"This research paper investigates the influence of different weight percentages (5%, 10%, 15%, and 20%) of cotton fiber reinforcement in epoxy composites on their mechanical properties. The mechanical characteristics examined include flexural strength, tensile strength, fracture toughness, impact strength, and hardness. The interfacial properties of the composites were analyzed through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Thermal and thermo-mechanical properties were examined using thermogravimetric analysis and dynamic mechanical analysis, respectively. The findings revealed that the addition of 15 wt.% cotton fiber in epoxy composites led to notable improvements in various mechanical properties. As the weight percentage of cotton fiber increased, the fracture and tensile properties of the composites showed a gradual improvement until reaching 15 wt.%. However, additional increments in weight percentage did not lead to significant improvements in the mechanical properties. Flexural strength and hardness showed a decreasing trend with increasing cotton fiber weight percentage, whereas impact strength showed an increasing trend. The SEM micrograph of the fracture surface revealed fiber pull-out, matrix cracking, interfacial debonding, and an uneven surface.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"79 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on mechanical performance of cotton fiber reinforced epoxy composites for agriculture applications\",\"authors\":\"Bipin Wankhede, H. Bisaria, Vinayak Dakre, Sushil K Singh\",\"doi\":\"10.1177/14644207241258609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper investigates the influence of different weight percentages (5%, 10%, 15%, and 20%) of cotton fiber reinforcement in epoxy composites on their mechanical properties. The mechanical characteristics examined include flexural strength, tensile strength, fracture toughness, impact strength, and hardness. The interfacial properties of the composites were analyzed through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Thermal and thermo-mechanical properties were examined using thermogravimetric analysis and dynamic mechanical analysis, respectively. The findings revealed that the addition of 15 wt.% cotton fiber in epoxy composites led to notable improvements in various mechanical properties. As the weight percentage of cotton fiber increased, the fracture and tensile properties of the composites showed a gradual improvement until reaching 15 wt.%. However, additional increments in weight percentage did not lead to significant improvements in the mechanical properties. Flexural strength and hardness showed a decreasing trend with increasing cotton fiber weight percentage, whereas impact strength showed an increasing trend. The SEM micrograph of the fracture surface revealed fiber pull-out, matrix cracking, interfacial debonding, and an uneven surface.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"79 6\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241258609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241258609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Experimental investigation on mechanical performance of cotton fiber reinforced epoxy composites for agriculture applications
This research paper investigates the influence of different weight percentages (5%, 10%, 15%, and 20%) of cotton fiber reinforcement in epoxy composites on their mechanical properties. The mechanical characteristics examined include flexural strength, tensile strength, fracture toughness, impact strength, and hardness. The interfacial properties of the composites were analyzed through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Thermal and thermo-mechanical properties were examined using thermogravimetric analysis and dynamic mechanical analysis, respectively. The findings revealed that the addition of 15 wt.% cotton fiber in epoxy composites led to notable improvements in various mechanical properties. As the weight percentage of cotton fiber increased, the fracture and tensile properties of the composites showed a gradual improvement until reaching 15 wt.%. However, additional increments in weight percentage did not lead to significant improvements in the mechanical properties. Flexural strength and hardness showed a decreasing trend with increasing cotton fiber weight percentage, whereas impact strength showed an increasing trend. The SEM micrograph of the fracture surface revealed fiber pull-out, matrix cracking, interfacial debonding, and an uneven surface.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.