利用优化 MaxEnt 模型预测基于未来气候变化的 Liriodendron chinense(Hemsl.)

IF 2.4 2区 农林科学 Q1 FORESTRY
Forests Pub Date : 2024-06-05 DOI:10.3390/f15060988
Jieyuan Bai, Hongcheng Wang, Yike Hu
{"title":"利用优化 MaxEnt 模型预测基于未来气候变化的 Liriodendron chinense(Hemsl.)","authors":"Jieyuan Bai, Hongcheng Wang, Yike Hu","doi":"10.3390/f15060988","DOIUrl":null,"url":null,"abstract":"Liriodendron chinense (Hemsl.) Sarg. (Magnoliales: Magnoliaceae), valued for its medicinal properties and timber and as an ornamental plant, is now classified as an endangered species. Investigating how future climate-change scenarios might affect the potential geographic distribution of L. chinense will provide a crucial scientific basis for its protection and management strategies. The MaxEnt model was calibrated using the ENMeval optimization package, and then it was coupled with ArcGIS 10.8 to forecast the possible distribution areas of L. chinense in China, utilizing elevation data, bioclimatic factors, and human footprint as environmental variables. The results indicate: (1) The optimal model parameters were set as follows: FC = LQ, RM = 0.5, the MaxEnt model demonstrated high predictive accuracy and minimal overfitting; (2) The total suitable habitat area for the potential geographical distribution of L. chinense during the current period is estimated at 151.55 × 104 km2, predominantly located in central, eastern, and southwestern regions of China; (3) The minimum temperature of the coldest month (bio6), precipitation of the driest month (bio14), precipitation of the driest quarter (bio17), precipitation of the warmest quarter (bio18), elevation (alt), and human footprint (hf) are the main environmental variables determining the suitable habitat distribution of L. chinense; (4) During the period from 2041 to 2060, under the carbon emission scenarios of SSP126, SSP245, and SSP370, the suitable habitat for L. chinense shows varying degrees of increase compared to the current period. However, under the highest concentration scenario of SSP585, the suitable habitat area decreases to some extent; (5) The distribution of L. chinense is likely to move towards higher latitudes and elevations in the future due to changes in the climate. This research provides a comprehensive analysis of the potential impacts of climate change on L. chinense, offering valuable information for its protection and management under future climatic conditions.","PeriodicalId":12339,"journal":{"name":"Forests","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Potential Suitable Distribution of Liriodendron chinense (Hemsl.) Sarg. in China Based on Future Climate Change Using the Optimized MaxEnt Model\",\"authors\":\"Jieyuan Bai, Hongcheng Wang, Yike Hu\",\"doi\":\"10.3390/f15060988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liriodendron chinense (Hemsl.) Sarg. (Magnoliales: Magnoliaceae), valued for its medicinal properties and timber and as an ornamental plant, is now classified as an endangered species. Investigating how future climate-change scenarios might affect the potential geographic distribution of L. chinense will provide a crucial scientific basis for its protection and management strategies. The MaxEnt model was calibrated using the ENMeval optimization package, and then it was coupled with ArcGIS 10.8 to forecast the possible distribution areas of L. chinense in China, utilizing elevation data, bioclimatic factors, and human footprint as environmental variables. The results indicate: (1) The optimal model parameters were set as follows: FC = LQ, RM = 0.5, the MaxEnt model demonstrated high predictive accuracy and minimal overfitting; (2) The total suitable habitat area for the potential geographical distribution of L. chinense during the current period is estimated at 151.55 × 104 km2, predominantly located in central, eastern, and southwestern regions of China; (3) The minimum temperature of the coldest month (bio6), precipitation of the driest month (bio14), precipitation of the driest quarter (bio17), precipitation of the warmest quarter (bio18), elevation (alt), and human footprint (hf) are the main environmental variables determining the suitable habitat distribution of L. chinense; (4) During the period from 2041 to 2060, under the carbon emission scenarios of SSP126, SSP245, and SSP370, the suitable habitat for L. chinense shows varying degrees of increase compared to the current period. However, under the highest concentration scenario of SSP585, the suitable habitat area decreases to some extent; (5) The distribution of L. chinense is likely to move towards higher latitudes and elevations in the future due to changes in the climate. This research provides a comprehensive analysis of the potential impacts of climate change on L. chinense, offering valuable information for its protection and management under future climatic conditions.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15060988\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15060988","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

Liriodendron chinense (Hemsl.) Sarg.(木兰科)的药用价值、木材价值和观赏价值,现已被列为濒危物种。研究未来的气候变化情景会如何影响栗树的潜在地理分布,将为栗树的保护和管理策略提供重要的科学依据。利用ENMeval优化软件包对MaxEnt模型进行了校核,然后将其与ArcGIS 10.8相结合,以海拔数据、生物气候因子和人类足迹为环境变量,预测了中国鹅掌楸的可能分布区域。结果表明:(1)最佳模型参数设置如下:FC=LQ,RM=0.5,MaxEnt模型表现出较高的预测精度和最小的过拟合;(2)估计中国楠木在当前时期潜在地理分布的适宜生境总面积为 151.4)2041-2060 年期间,在 SSP126、SSP245 和 SSP370 的碳排放情景下,金线莲的适宜栖息地与当前相比有不同程度的增加。然而,在 SSP585 的最高浓度情景下,适宜栖息地面积出现了一定程度的减少;(5)由于气候的变化,未来金线莲的分布有可能向高纬度和高海拔地区移动。本研究全面分析了气候变化对栗树的潜在影响,为未来气候条件下栗树的保护和管理提供了宝贵信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Potential Suitable Distribution of Liriodendron chinense (Hemsl.) Sarg. in China Based on Future Climate Change Using the Optimized MaxEnt Model
Liriodendron chinense (Hemsl.) Sarg. (Magnoliales: Magnoliaceae), valued for its medicinal properties and timber and as an ornamental plant, is now classified as an endangered species. Investigating how future climate-change scenarios might affect the potential geographic distribution of L. chinense will provide a crucial scientific basis for its protection and management strategies. The MaxEnt model was calibrated using the ENMeval optimization package, and then it was coupled with ArcGIS 10.8 to forecast the possible distribution areas of L. chinense in China, utilizing elevation data, bioclimatic factors, and human footprint as environmental variables. The results indicate: (1) The optimal model parameters were set as follows: FC = LQ, RM = 0.5, the MaxEnt model demonstrated high predictive accuracy and minimal overfitting; (2) The total suitable habitat area for the potential geographical distribution of L. chinense during the current period is estimated at 151.55 × 104 km2, predominantly located in central, eastern, and southwestern regions of China; (3) The minimum temperature of the coldest month (bio6), precipitation of the driest month (bio14), precipitation of the driest quarter (bio17), precipitation of the warmest quarter (bio18), elevation (alt), and human footprint (hf) are the main environmental variables determining the suitable habitat distribution of L. chinense; (4) During the period from 2041 to 2060, under the carbon emission scenarios of SSP126, SSP245, and SSP370, the suitable habitat for L. chinense shows varying degrees of increase compared to the current period. However, under the highest concentration scenario of SSP585, the suitable habitat area decreases to some extent; (5) The distribution of L. chinense is likely to move towards higher latitudes and elevations in the future due to changes in the climate. This research provides a comprehensive analysis of the potential impacts of climate change on L. chinense, offering valuable information for its protection and management under future climatic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信