论无限水平层中粘性可压缩磁流体动力学方程的稳定流动

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Rachid Benabidallah, François Ebobisse
{"title":"论无限水平层中粘性可压缩磁流体动力学方程的稳定流动","authors":"Rachid Benabidallah,&nbsp;François Ebobisse","doi":"10.1007/s00021-024-00881-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider in an infinite horizontal layer the stationary motion of a viscous compressible fluid in a magnetic field subject to the gravitational force, where the Dirichlet boundary condition for the velocity and similar but non-homogeneous and large enough conditions for the magnetic field are assumed. Existence of a stationary solution in a neighborhood close to the equilibrium state is obtained in Sobolev spaces as limit of a sequence of fixed points of some suitable operators.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00881-4.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Steady Flows of Viscous Compressible Magnetohydrodynamic Equations in an Infinite Horizontal Layer\",\"authors\":\"Rachid Benabidallah,&nbsp;François Ebobisse\",\"doi\":\"10.1007/s00021-024-00881-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider in an infinite horizontal layer the stationary motion of a viscous compressible fluid in a magnetic field subject to the gravitational force, where the Dirichlet boundary condition for the velocity and similar but non-homogeneous and large enough conditions for the magnetic field are assumed. Existence of a stationary solution in a neighborhood close to the equilibrium state is obtained in Sobolev spaces as limit of a sequence of fixed points of some suitable operators.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-024-00881-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00881-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00881-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在一个无限水平层中,粘性可压缩流体在磁场中受引力作用的静止运动,其中假设速度的边界条件为 Dirichlet,磁场的边界条件类似但不均匀且足够大。在 Sobolev 空间中,作为一些合适算子的定点序列的极限,在接近平衡状态的邻域中存在静止解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Steady Flows of Viscous Compressible Magnetohydrodynamic Equations in an Infinite Horizontal Layer

We consider in an infinite horizontal layer the stationary motion of a viscous compressible fluid in a magnetic field subject to the gravitational force, where the Dirichlet boundary condition for the velocity and similar but non-homogeneous and large enough conditions for the magnetic field are assumed. Existence of a stationary solution in a neighborhood close to the equilibrium state is obtained in Sobolev spaces as limit of a sequence of fixed points of some suitable operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信