{"title":"通过量子学习控制实现线性高斯量子系统的最优控制","authors":"Yu-Hong Liu, Yexiong Zeng, Qing-Shou Tan, Daoyi Dong, Franco Nori, Jie‐Qiao Liao","doi":"10.1103/PhysRevA.109.063508","DOIUrl":null,"url":null,"abstract":"Efficiently controlling linear Gaussian quantum (LGQ) systems is a significant task in both the study of fundamental quantum theory and the development of modern quantum technology. Here, we propose a general quantum-learning-control method for optimally controlling LGQ systems based on the gradient-descent algorithm. Our approach flexibly designs the loss function for diverse tasks by utilizing first- and second-order moments that completely describe the quantum state of LGQ systems. We demonstrate both deep optomechanical cooling and large optomechanical entanglement using this approach. Our approach enables the fast and deep ground-state cooling of a mechanical resonator within a short time, surpassing the limitations of sideband cooling in the continuous-wave driven strong-coupling regime. Furthermore, optomechanical entanglement could be generated remarkably fast and surpass several times the corresponding steady-state entanglement, even when the thermal phonon occupation reaches one hundred. This work will not only broaden the application of quantum learning control, but also open an avenue for optimal control of LGQ systems.","PeriodicalId":48702,"journal":{"name":"Physical Review a","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control of linear Gaussian quantum systems via quantum learning control\",\"authors\":\"Yu-Hong Liu, Yexiong Zeng, Qing-Shou Tan, Daoyi Dong, Franco Nori, Jie‐Qiao Liao\",\"doi\":\"10.1103/PhysRevA.109.063508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently controlling linear Gaussian quantum (LGQ) systems is a significant task in both the study of fundamental quantum theory and the development of modern quantum technology. Here, we propose a general quantum-learning-control method for optimally controlling LGQ systems based on the gradient-descent algorithm. Our approach flexibly designs the loss function for diverse tasks by utilizing first- and second-order moments that completely describe the quantum state of LGQ systems. We demonstrate both deep optomechanical cooling and large optomechanical entanglement using this approach. Our approach enables the fast and deep ground-state cooling of a mechanical resonator within a short time, surpassing the limitations of sideband cooling in the continuous-wave driven strong-coupling regime. Furthermore, optomechanical entanglement could be generated remarkably fast and surpass several times the corresponding steady-state entanglement, even when the thermal phonon occupation reaches one hundred. This work will not only broaden the application of quantum learning control, but also open an avenue for optimal control of LGQ systems.\",\"PeriodicalId\":48702,\"journal\":{\"name\":\"Physical Review a\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review a\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevA.109.063508\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevA.109.063508","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Optimal control of linear Gaussian quantum systems via quantum learning control
Efficiently controlling linear Gaussian quantum (LGQ) systems is a significant task in both the study of fundamental quantum theory and the development of modern quantum technology. Here, we propose a general quantum-learning-control method for optimally controlling LGQ systems based on the gradient-descent algorithm. Our approach flexibly designs the loss function for diverse tasks by utilizing first- and second-order moments that completely describe the quantum state of LGQ systems. We demonstrate both deep optomechanical cooling and large optomechanical entanglement using this approach. Our approach enables the fast and deep ground-state cooling of a mechanical resonator within a short time, surpassing the limitations of sideband cooling in the continuous-wave driven strong-coupling regime. Furthermore, optomechanical entanglement could be generated remarkably fast and surpass several times the corresponding steady-state entanglement, even when the thermal phonon occupation reaches one hundred. This work will not only broaden the application of quantum learning control, but also open an avenue for optimal control of LGQ systems.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics