使用强化木钉的木材连接在火灾下的热响应

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume
{"title":"使用强化木钉的木材连接在火灾下的热响应","authors":"M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume","doi":"10.1177/07349041241257262","DOIUrl":null,"url":null,"abstract":"A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal response of timber connections using densified wood dowels under fire\",\"authors\":\"M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume\",\"doi\":\"10.1177/07349041241257262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/07349041241257262\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041241257262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前正在开发和测试一种使用强化木钉的新型木材连接方式。具体步骤是将这些强化木钉插入预先钻好的孔中。由于这种连接技术尚处于早期阶段,因此有必要采用独特的设计方法,同时考虑温度变化的影响。研究的主要目标是确定这些连接件在高温下的热特性。这项研究采用了实验方法,并辅以数值分析,创新性地将常用于研究热相关生物质特性的动力学模型应用于木材。该方法需要使用热重分析来确定动力学参数。提出的热解动力学模型已通过用户子程序 UMATHT 在 Abaqus/Implicit 代码中实现。研究得出结论,使用动力学模型可通过考虑质量损失这一影响热性能的关键因素来提高精度。模拟成功地复制了温度分布和炭化层厚度,这对设计木材结构至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal response of timber connections using densified wood dowels under fire
A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信