p∞$p^{infty }$-Selmer ranks of CM abelian varieties

IF 0.8 3区 数学 Q2 MATHEMATICS
Jamie Bell
{"title":"p∞$p^{infty }$-Selmer ranks of CM abelian varieties","authors":"Jamie Bell","doi":"10.1112/blms.13094","DOIUrl":null,"url":null,"abstract":"<p>For an elliptic curve with complex multiplication over a number field, the <span></span><math>\n <semantics>\n <msup>\n <mi>p</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$p^{\\infty }$</annotation>\n </semantics></math>-Selmer rank is even for all <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. Česnavičius proved this using the fact that <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> admits a <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-isogeny whenever <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> splits in the complex multiplication field, and invoking known cases of the <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-parity conjecture. We give a direct proof, and generalise the result to abelian varieties.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2711-2717"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13094","citationCount":"0","resultStr":"{\"title\":\"p\\n ∞\\n \\n $p^{\\\\infty }$\\n -Selmer ranks of CM abelian varieties\",\"authors\":\"Jamie Bell\",\"doi\":\"10.1112/blms.13094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an elliptic curve with complex multiplication over a number field, the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>p</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$p^{\\\\infty }$</annotation>\\n </semantics></math>-Selmer rank is even for all <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. Česnavičius proved this using the fact that <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math> admits a <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-isogeny whenever <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> splits in the complex multiplication field, and invoking known cases of the <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-parity conjecture. We give a direct proof, and generalise the result to abelian varieties.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2711-2717\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13094\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13094","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于在一个数域上具有复乘法的椭圆曲线来说,对于所有......的椭圆曲线,-塞尔默秩都是偶数。Česnavičius利用在复乘法域中无论何时分裂都允许-同源的事实,并援引-奇偶性猜想的已知情况,证明了这一点。我们给出了直接证明,并将结果推广到无性方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p ∞ $p^{\infty }$ -Selmer ranks of CM abelian varieties

For an elliptic curve with complex multiplication over a number field, the p $p^{\infty }$ -Selmer rank is even for all p $p$ . Česnavičius proved this using the fact that E $E$ admits a p $p$ -isogeny whenever p $p$ splits in the complex multiplication field, and invoking known cases of the p $p$ -parity conjecture. We give a direct proof, and generalise the result to abelian varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信