利用指数随机图模型生成合成电网

Francesco Giacomarra, G. Bet, A. Zocca
{"title":"利用指数随机图模型生成合成电网","authors":"Francesco Giacomarra, G. Bet, A. Zocca","doi":"10.1103/prxenergy.3.023005","DOIUrl":null,"url":null,"abstract":"Synthetic power grids enable real-world energy system simulations and are crucial for algorithm testing, resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic transmission power grids using exponential random graph (ERG) models. Our two main contributions are (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of power grids and (2) a general procedure for estimating the parameters of such a model conditioned on working with connected graphs. From a modeling perspective, we identify edge counts per bus type and k-triangles as crucial topological characteristics for synthetic power-grid generation. From a technical perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures the desired topological properties of power grids.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":311086,"journal":{"name":"PRX Energy","volume":"19 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Synthetic Power Grids Using Exponential Random Graph Models\",\"authors\":\"Francesco Giacomarra, G. Bet, A. Zocca\",\"doi\":\"10.1103/prxenergy.3.023005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic power grids enable real-world energy system simulations and are crucial for algorithm testing, resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic transmission power grids using exponential random graph (ERG) models. Our two main contributions are (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of power grids and (2) a general procedure for estimating the parameters of such a model conditioned on working with connected graphs. From a modeling perspective, we identify edge counts per bus type and k-triangles as crucial topological characteristics for synthetic power-grid generation. From a technical perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures the desired topological properties of power grids.\\n \\n \\n \\n \\n Published by the American Physical Society\\n 2024\\n \\n \\n\",\"PeriodicalId\":311086,\"journal\":{\"name\":\"PRX Energy\",\"volume\":\"19 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxenergy.3.023005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxenergy.3.023005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成电网可以模拟真实世界的能源系统,对于算法测试、复原力评估和政策制定至关重要。我们提出了一种利用指数随机图(ERG)模型生成合成输电网的新方法。我们的两个主要贡献是:(1) 专为捕捉电网拓扑细微差别而定制的 ERG 模型;(2) 以连通图为条件估算此类模型参数的一般程序。从建模角度来看,我们将每种母线类型的边数和 k 三角形确定为合成电网发电的关键拓扑特征。从技术角度来看,我们开发了一种严格的方法来估算 ERG 的参数,该方法受限于连通图空间。所提出的模型灵活、易于实现,并能成功捕捉所需的电网拓扑特性。 美国物理学会出版 2024
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Synthetic Power Grids Using Exponential Random Graph Models
Synthetic power grids enable real-world energy system simulations and are crucial for algorithm testing, resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic transmission power grids using exponential random graph (ERG) models. Our two main contributions are (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of power grids and (2) a general procedure for estimating the parameters of such a model conditioned on working with connected graphs. From a modeling perspective, we identify edge counts per bus type and k-triangles as crucial topological characteristics for synthetic power-grid generation. From a technical perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures the desired topological properties of power grids. Published by the American Physical Society 2024
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信