{"title":"利用指数随机图模型生成合成电网","authors":"Francesco Giacomarra, G. Bet, A. Zocca","doi":"10.1103/prxenergy.3.023005","DOIUrl":null,"url":null,"abstract":"Synthetic power grids enable real-world energy system simulations and are crucial for algorithm testing, resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic transmission power grids using exponential random graph (ERG) models. Our two main contributions are (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of power grids and (2) a general procedure for estimating the parameters of such a model conditioned on working with connected graphs. From a modeling perspective, we identify edge counts per bus type and k-triangles as crucial topological characteristics for synthetic power-grid generation. From a technical perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures the desired topological properties of power grids.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":311086,"journal":{"name":"PRX Energy","volume":"19 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Synthetic Power Grids Using Exponential Random Graph Models\",\"authors\":\"Francesco Giacomarra, G. Bet, A. Zocca\",\"doi\":\"10.1103/prxenergy.3.023005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic power grids enable real-world energy system simulations and are crucial for algorithm testing, resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic transmission power grids using exponential random graph (ERG) models. Our two main contributions are (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of power grids and (2) a general procedure for estimating the parameters of such a model conditioned on working with connected graphs. From a modeling perspective, we identify edge counts per bus type and k-triangles as crucial topological characteristics for synthetic power-grid generation. From a technical perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures the desired topological properties of power grids.\\n \\n \\n \\n \\n Published by the American Physical Society\\n 2024\\n \\n \\n\",\"PeriodicalId\":311086,\"journal\":{\"name\":\"PRX Energy\",\"volume\":\"19 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxenergy.3.023005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxenergy.3.023005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generating Synthetic Power Grids Using Exponential Random Graph Models
Synthetic power grids enable real-world energy system simulations and are crucial for algorithm testing, resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic transmission power grids using exponential random graph (ERG) models. Our two main contributions are (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of power grids and (2) a general procedure for estimating the parameters of such a model conditioned on working with connected graphs. From a modeling perspective, we identify edge counts per bus type and k-triangles as crucial topological characteristics for synthetic power-grid generation. From a technical perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures the desired topological properties of power grids.
Published by the American Physical Society
2024