排列不变布尔态

IF 0.6 4区 数学 Q3 MATHEMATICS
Daniele Mundici
{"title":"排列不变布尔态","authors":"Daniele Mundici","doi":"10.1007/s00012-024-00859-3","DOIUrl":null,"url":null,"abstract":"<div><p>We give a self-contained proof of the following result: Finitely additive probability measures (also known as “states”) of the free boolean algebra <span>\\({\\mathsf F}_\\omega \\)</span> over the free generating set <span>\\(\\{X_1,X_2,\\ldots \\}\\)</span> having the invariance property under finite permutations of the <span>\\(X_i\\)</span>, coincide with states lying in the closure of the set of convex combinations of product states of <span>\\({\\mathsf F}_\\omega \\)</span> in the vector space <span>\\(\\mathbb R^{{\\mathsf F}_\\omega }\\)</span> equipped with the product topology. De Finetti’s celebrated exchangeability theorem can be easily recovered from our proof.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permutation invariant boolean states\",\"authors\":\"Daniele Mundici\",\"doi\":\"10.1007/s00012-024-00859-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a self-contained proof of the following result: Finitely additive probability measures (also known as “states”) of the free boolean algebra <span>\\\\({\\\\mathsf F}_\\\\omega \\\\)</span> over the free generating set <span>\\\\(\\\\{X_1,X_2,\\\\ldots \\\\}\\\\)</span> having the invariance property under finite permutations of the <span>\\\\(X_i\\\\)</span>, coincide with states lying in the closure of the set of convex combinations of product states of <span>\\\\({\\\\mathsf F}_\\\\omega \\\\)</span> in the vector space <span>\\\\(\\\\mathbb R^{{\\\\mathsf F}_\\\\omega }\\\\)</span> equipped with the product topology. De Finetti’s celebrated exchangeability theorem can be easily recovered from our proof.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00859-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00859-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了以下结果的自足证明:在自由生成集\(\{X_1,X_2,\ldots \}\)上的自由布尔代数\({\mathsf F}_\omega \)的有限可加概率度量(也称为 "状态")在\(X_i\)的有限排列下具有不变性、与位于向量空间 \(\mathbb R^{\{mathsf F}_\omega }\) 中带有积拓扑的 \({\mathsf F}_\omega \)的积状态的凸组合集合的闭合中的状态重合。德菲内蒂著名的可交换性定理可以很容易地从我们的证明中得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Permutation invariant boolean states

We give a self-contained proof of the following result: Finitely additive probability measures (also known as “states”) of the free boolean algebra \({\mathsf F}_\omega \) over the free generating set \(\{X_1,X_2,\ldots \}\) having the invariance property under finite permutations of the \(X_i\), coincide with states lying in the closure of the set of convex combinations of product states of \({\mathsf F}_\omega \) in the vector space \(\mathbb R^{{\mathsf F}_\omega }\) equipped with the product topology. De Finetti’s celebrated exchangeability theorem can be easily recovered from our proof.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信