{"title":"通过分析降水和边界层方案,改进水文气象耦合模拟中的飓风强度和流量预报","authors":"Md. Murad Hossain Khondaker, Mostafa Momen","doi":"10.1175/jhm-d-23-0153.1","DOIUrl":null,"url":null,"abstract":"\nHurricanes have been the most destructive and expensive hydro-meteorological event in US history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather and Research Forecasting (WRF) atmospheric model is coupled with the WRF hydrological model (WRF-Hydro) to simulate four major hurricanes landfalling in three hurricane-prone regions in the US. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the United States Geological Survey (USGS) gauges. Then, 60 coupled hydro-meteorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is over-dissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ~39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ~16% and ~34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"3 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving hurricane intensity and streamflow forecasts in coupled hydro-meteorological simulations by analyzing precipitation and boundary layer schemes\",\"authors\":\"Md. Murad Hossain Khondaker, Mostafa Momen\",\"doi\":\"10.1175/jhm-d-23-0153.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nHurricanes have been the most destructive and expensive hydro-meteorological event in US history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather and Research Forecasting (WRF) atmospheric model is coupled with the WRF hydrological model (WRF-Hydro) to simulate four major hurricanes landfalling in three hurricane-prone regions in the US. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the United States Geological Survey (USGS) gauges. Then, 60 coupled hydro-meteorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is over-dissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ~39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ~16% and ~34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-23-0153.1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0153.1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Improving hurricane intensity and streamflow forecasts in coupled hydro-meteorological simulations by analyzing precipitation and boundary layer schemes
Hurricanes have been the most destructive and expensive hydro-meteorological event in US history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather and Research Forecasting (WRF) atmospheric model is coupled with the WRF hydrological model (WRF-Hydro) to simulate four major hurricanes landfalling in three hurricane-prone regions in the US. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the United States Geological Survey (USGS) gauges. Then, 60 coupled hydro-meteorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is over-dissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ~39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ~16% and ~34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico