内部故障下氮封电力变压器的压力特性

Processes Pub Date : 2024-06-06 DOI:10.3390/pr12061167
Jiansheng Li, Zheng Jia, Shengquan Wang, Shiming Liu
{"title":"内部故障下氮封电力变压器的压力特性","authors":"Jiansheng Li, Zheng Jia, Shengquan Wang, Shiming Liu","doi":"10.3390/pr12061167","DOIUrl":null,"url":null,"abstract":"The explosion-proof performance is an important index for oil-immersed transformers. The nitrogen-sealed transformer is a new type of transformer with nitrogen gas in the upper space, which can buffer against internal stress increase caused by arc faults. However, the pressure changes in the transformer under internal faults are unclear. The authors of this study propose a method based on finite element simulation to analyze the pressure changes and the stress on the tank. First, the calculation process of arc energy and the pressure of the bubbles caused by the arc are derived. Second, the dynamic pressure wave propagation model and acoustic-solid coupling model are established. Last, the finite element simulation model is built to analyze the pressure characteristics. Taking the winding turn-to-turn and phase-to-phase short circuit faults as the analysis situations, the pressure changes in the 110 kV/20 MVA nitrogen-sealed transformer are simulated. Due to the pressure wave refraction and reflection, the pressure changes show oscillatory characteristics with time after the occurrence of an internal short circuit fault. The pressure wave travels from the arc fault position to the periphery. Compared to the conventional transformer, the pressure changes with slower variations under an internal short circuit fault and the tank suffer less stress, which indicates that the nitrogen-sealed transformer is more effective in the explosion-proof performance.","PeriodicalId":506892,"journal":{"name":"Processes","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure Characteristics in the Nitrogen-Sealed Power Transformers under Internal Faults\",\"authors\":\"Jiansheng Li, Zheng Jia, Shengquan Wang, Shiming Liu\",\"doi\":\"10.3390/pr12061167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosion-proof performance is an important index for oil-immersed transformers. The nitrogen-sealed transformer is a new type of transformer with nitrogen gas in the upper space, which can buffer against internal stress increase caused by arc faults. However, the pressure changes in the transformer under internal faults are unclear. The authors of this study propose a method based on finite element simulation to analyze the pressure changes and the stress on the tank. First, the calculation process of arc energy and the pressure of the bubbles caused by the arc are derived. Second, the dynamic pressure wave propagation model and acoustic-solid coupling model are established. Last, the finite element simulation model is built to analyze the pressure characteristics. Taking the winding turn-to-turn and phase-to-phase short circuit faults as the analysis situations, the pressure changes in the 110 kV/20 MVA nitrogen-sealed transformer are simulated. Due to the pressure wave refraction and reflection, the pressure changes show oscillatory characteristics with time after the occurrence of an internal short circuit fault. The pressure wave travels from the arc fault position to the periphery. Compared to the conventional transformer, the pressure changes with slower variations under an internal short circuit fault and the tank suffer less stress, which indicates that the nitrogen-sealed transformer is more effective in the explosion-proof performance.\",\"PeriodicalId\":506892,\"journal\":{\"name\":\"Processes\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/pr12061167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pr12061167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

防爆性能是油浸式变压器的一项重要指标。氮封变压器是一种新型变压器,其上部空间充有氮气,可以缓冲电弧故障引起的内应力增加。然而,变压器在内部故障情况下的压力变化尚不清楚。本研究的作者提出了一种基于有限元模拟的方法来分析油箱的压力变化和应力。首先,推导了电弧能量和电弧引起的气泡压力的计算过程。其次,建立了动态压力波传播模型和声固耦合模型。最后,建立有限元仿真模型来分析压力特性。以绕组匝间和相间短路故障为分析情境,模拟了 110 kV/20 MVA 氮封变压器内的压力变化。由于压力波的折射和反射,内部短路故障发生后,压力变化呈现出随时间变化的振荡特性。压力波从故障电弧位置向外围传播。与传统变压器相比,氮封变压器在内部短路故障下的压力变化较慢,油箱所受应力较小,这表明氮封变压器的防爆性能更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure Characteristics in the Nitrogen-Sealed Power Transformers under Internal Faults
The explosion-proof performance is an important index for oil-immersed transformers. The nitrogen-sealed transformer is a new type of transformer with nitrogen gas in the upper space, which can buffer against internal stress increase caused by arc faults. However, the pressure changes in the transformer under internal faults are unclear. The authors of this study propose a method based on finite element simulation to analyze the pressure changes and the stress on the tank. First, the calculation process of arc energy and the pressure of the bubbles caused by the arc are derived. Second, the dynamic pressure wave propagation model and acoustic-solid coupling model are established. Last, the finite element simulation model is built to analyze the pressure characteristics. Taking the winding turn-to-turn and phase-to-phase short circuit faults as the analysis situations, the pressure changes in the 110 kV/20 MVA nitrogen-sealed transformer are simulated. Due to the pressure wave refraction and reflection, the pressure changes show oscillatory characteristics with time after the occurrence of an internal short circuit fault. The pressure wave travels from the arc fault position to the periphery. Compared to the conventional transformer, the pressure changes with slower variations under an internal short circuit fault and the tank suffer less stress, which indicates that the nitrogen-sealed transformer is more effective in the explosion-proof performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信