{"title":"定量易感性图谱作为肌萎缩性脊髓侧索硬化症的早期神经影像生物标记:综述","authors":"Sana Mohammadi, Sadegh Ghaderi, Farzad Fatehi","doi":"10.1002/ird3.88","DOIUrl":null,"url":null,"abstract":"<p>Quantitative susceptibility mapping (QSM) is an advanced post-processing technique in magnetic resonance imaging that offers precise measurements of tissue magnetic susceptibility with impressive spatial resolution and sensitivity. This review examines the potential of QSM as a biomarker for early detection and monitoring of amyotrophic lateral sclerosis (ALS). Since 2015, studies have consistently reported increased QSM values in the motor regions of individuals with ALS, indicating significant iron deposition. Iron accumulation is associated with dysfunction of the upper motor neurons and faster disease progression. Notably, increased QSM values were also observed in the critical subcortical areas responsible for motor function and cognitive control. However, standardizing optimized protocols, including background field removal algorithms, phase unwrapping approaches, and methods for final susceptibility map reconstruction, has the potential to enhance the consistency and reliability of QSM as an ALS biomarker. Overall, the current body of evidence strongly supports QSM in detecting iron dysregulation associated with neurodegeneration in both motor and extra-motor regions in ALS. Furthermore, QSM's remarkable sensitivity to early pathological iron changes and its high specificity in distinguishing ALS positions make it a promising diagnostic and progression-tracking biomarker.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 4","pages":"387-395"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.88","citationCount":"0","resultStr":"{\"title\":\"Quantitative susceptibility mapping as an early neuroimaging biomarker for amyotrophic lateral sclerosis: A review\",\"authors\":\"Sana Mohammadi, Sadegh Ghaderi, Farzad Fatehi\",\"doi\":\"10.1002/ird3.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantitative susceptibility mapping (QSM) is an advanced post-processing technique in magnetic resonance imaging that offers precise measurements of tissue magnetic susceptibility with impressive spatial resolution and sensitivity. This review examines the potential of QSM as a biomarker for early detection and monitoring of amyotrophic lateral sclerosis (ALS). Since 2015, studies have consistently reported increased QSM values in the motor regions of individuals with ALS, indicating significant iron deposition. Iron accumulation is associated with dysfunction of the upper motor neurons and faster disease progression. Notably, increased QSM values were also observed in the critical subcortical areas responsible for motor function and cognitive control. However, standardizing optimized protocols, including background field removal algorithms, phase unwrapping approaches, and methods for final susceptibility map reconstruction, has the potential to enhance the consistency and reliability of QSM as an ALS biomarker. Overall, the current body of evidence strongly supports QSM in detecting iron dysregulation associated with neurodegeneration in both motor and extra-motor regions in ALS. Furthermore, QSM's remarkable sensitivity to early pathological iron changes and its high specificity in distinguishing ALS positions make it a promising diagnostic and progression-tracking biomarker.</p>\",\"PeriodicalId\":73508,\"journal\":{\"name\":\"iRadiology\",\"volume\":\"2 4\",\"pages\":\"387-395\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.88\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iRadiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird3.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iRadiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird3.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
定量磁感应强度图谱(QSM)是磁共振成像中一种先进的后处理技术,可精确测量组织的磁感应强度,其空间分辨率和灵敏度令人印象深刻。本综述探讨了 QSM 作为生物标记物用于早期检测和监测肌萎缩性脊髓侧索硬化症(ALS)的潜力。自 2015 年以来,不断有研究报告称,肌萎缩侧索硬化症患者运动区的 QSM 值升高,表明铁沉积明显。铁积累与上运动神经元功能障碍和疾病进展加快有关。值得注意的是,在负责运动功能和认知控制的重要皮层下区域也观察到了 QSM 值的增加。然而,标准化的优化方案(包括背景场去除算法、相位解包方法和最终易感图重建方法)有可能提高 QSM 作为 ALS 生物标志物的一致性和可靠性。总之,目前的证据有力地支持 QSM 检测与 ALS 运动区和运动外区神经变性相关的铁失调。此外,QSM 对早期病理铁变化的显著敏感性及其在区分 ALS 病位方面的高度特异性使其成为一种很有前景的诊断和进展追踪生物标记物。
Quantitative susceptibility mapping as an early neuroimaging biomarker for amyotrophic lateral sclerosis: A review
Quantitative susceptibility mapping (QSM) is an advanced post-processing technique in magnetic resonance imaging that offers precise measurements of tissue magnetic susceptibility with impressive spatial resolution and sensitivity. This review examines the potential of QSM as a biomarker for early detection and monitoring of amyotrophic lateral sclerosis (ALS). Since 2015, studies have consistently reported increased QSM values in the motor regions of individuals with ALS, indicating significant iron deposition. Iron accumulation is associated with dysfunction of the upper motor neurons and faster disease progression. Notably, increased QSM values were also observed in the critical subcortical areas responsible for motor function and cognitive control. However, standardizing optimized protocols, including background field removal algorithms, phase unwrapping approaches, and methods for final susceptibility map reconstruction, has the potential to enhance the consistency and reliability of QSM as an ALS biomarker. Overall, the current body of evidence strongly supports QSM in detecting iron dysregulation associated with neurodegeneration in both motor and extra-motor regions in ALS. Furthermore, QSM's remarkable sensitivity to early pathological iron changes and its high specificity in distinguishing ALS positions make it a promising diagnostic and progression-tracking biomarker.