{"title":"在历史地形图上划分湿地的深度学习方法","authors":"Jakub Vynikal, Jana Müllerová, Jan Pacina","doi":"10.1111/tgis.13193","DOIUrl":null,"url":null,"abstract":"Historical topographic maps are an important source of a visual record of the landscape, showing geographical elements such as terrain, elevation, rivers and water bodies, roads, buildings, and land use and land cover (LULC). Historical maps are scanned to their digital representation, a raster image. To quantify different classes of LULC, it is necessary to transform scanned maps to their vector equivalent. Traditionally, this has been done either manually, or by using (semi)automatic methods of clustering/segmentation. With the advent of deep neural networks, new horizons opened for more effective and accurate processing. This article attempts to use different deep‐learning approaches to detect and segment wetlands on historical Topographic Maps 1: 10000 (TM10), created during the 50s and 60s. Due to the specific symbology of wetlands, their processing can be challenging. It deals with two distinct approaches in the deep learning world, semantic segmentation and object detection, represented by the U‐Net and Single‐Shot Detector (SSD) neural networks, respectively. The suitability, speed, and accuracy of the two approaches in neural networks are analyzed. The results are satisfactory, with the U‐Net F1 score reaching 75.7% and the SSD object detection approach presenting an unconventional alternative.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning approaches for delineating wetlands on historical topographic maps\",\"authors\":\"Jakub Vynikal, Jana Müllerová, Jan Pacina\",\"doi\":\"10.1111/tgis.13193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historical topographic maps are an important source of a visual record of the landscape, showing geographical elements such as terrain, elevation, rivers and water bodies, roads, buildings, and land use and land cover (LULC). Historical maps are scanned to their digital representation, a raster image. To quantify different classes of LULC, it is necessary to transform scanned maps to their vector equivalent. Traditionally, this has been done either manually, or by using (semi)automatic methods of clustering/segmentation. With the advent of deep neural networks, new horizons opened for more effective and accurate processing. This article attempts to use different deep‐learning approaches to detect and segment wetlands on historical Topographic Maps 1: 10000 (TM10), created during the 50s and 60s. Due to the specific symbology of wetlands, their processing can be challenging. It deals with two distinct approaches in the deep learning world, semantic segmentation and object detection, represented by the U‐Net and Single‐Shot Detector (SSD) neural networks, respectively. The suitability, speed, and accuracy of the two approaches in neural networks are analyzed. The results are satisfactory, with the U‐Net F1 score reaching 75.7% and the SSD object detection approach presenting an unconventional alternative.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13193\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13193","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Deep learning approaches for delineating wetlands on historical topographic maps
Historical topographic maps are an important source of a visual record of the landscape, showing geographical elements such as terrain, elevation, rivers and water bodies, roads, buildings, and land use and land cover (LULC). Historical maps are scanned to their digital representation, a raster image. To quantify different classes of LULC, it is necessary to transform scanned maps to their vector equivalent. Traditionally, this has been done either manually, or by using (semi)automatic methods of clustering/segmentation. With the advent of deep neural networks, new horizons opened for more effective and accurate processing. This article attempts to use different deep‐learning approaches to detect and segment wetlands on historical Topographic Maps 1: 10000 (TM10), created during the 50s and 60s. Due to the specific symbology of wetlands, their processing can be challenging. It deals with two distinct approaches in the deep learning world, semantic segmentation and object detection, represented by the U‐Net and Single‐Shot Detector (SSD) neural networks, respectively. The suitability, speed, and accuracy of the two approaches in neural networks are analyzed. The results are satisfactory, with the U‐Net F1 score reaching 75.7% and the SSD object detection approach presenting an unconventional alternative.
期刊介绍:
Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business