拉伸片上牛顿加热的二阶粘性耗散瞬态 MHD 非线性对流滑移流

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-06-07 DOI:10.1002/htj.23101
R. Balamurugan
{"title":"拉伸片上牛顿加热的二阶粘性耗散瞬态 MHD 非线性对流滑移流","authors":"R. Balamurugan","doi":"10.1002/htj.23101","DOIUrl":null,"url":null,"abstract":"<p>The current study explores the transient magnetohydrodynamic (MHD) flow with the interaction of quadratic convection, slip of second-order momentum, viscous dissipation, and Newtonian heating. In this setup, the governing equations become highly nonlinear. The numerical solutions are attained by utilizing an implicit type of the Crank–Nicolson technique. The primary aim of the exploration is to figure out the consequence of MHD nonlinear convection and momentum slip of second-order on the overall behavior of the system. The robust agreement is evinced by numerical computations verified against existing research. Skin friction and Nusselt number decreases for second-order slips, <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>δ</mi>\n \n <mo>=</mo>\n \n <mn>0</mn>\n \n <mo>,</mo>\n \n <mo>−</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mo>−</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mo>−</mo>\n \n <mn>8</mn>\n </mrow>\n </mrow>\n <annotation> $\\delta =0,-2,-4,-8$</annotation>\n </semantics></math>, and −16. And for <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>γ</mi>\n \n <mo>=</mo>\n \n <mn>1.0</mn>\n </mrow>\n </mrow>\n <annotation> $\\gamma =1.0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>δ</mi>\n \n <mo>=</mo>\n \n <mo>-</mo>\n \n <mn>2.0</mn>\n </mrow>\n </mrow>\n <annotation> $\\delta = \\mbox{-} 2.0$</annotation>\n </semantics></math> the temporal coefficients of friction and heat transmission attain a steady state at time <i>t</i> = 29.88. It is significant that nonlinear convection predominates over viscous dissipation and that nonlinear convection is influenced by magnetic fields. The results are described using plots and tables.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3547-3578"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscous dissipative transient MHD nonlinear convective slip flow of second-order with Newtonian heating on a stretching sheet\",\"authors\":\"R. Balamurugan\",\"doi\":\"10.1002/htj.23101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current study explores the transient magnetohydrodynamic (MHD) flow with the interaction of quadratic convection, slip of second-order momentum, viscous dissipation, and Newtonian heating. In this setup, the governing equations become highly nonlinear. The numerical solutions are attained by utilizing an implicit type of the Crank–Nicolson technique. The primary aim of the exploration is to figure out the consequence of MHD nonlinear convection and momentum slip of second-order on the overall behavior of the system. The robust agreement is evinced by numerical computations verified against existing research. Skin friction and Nusselt number decreases for second-order slips, <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>δ</mi>\\n \\n <mo>=</mo>\\n \\n <mn>0</mn>\\n \\n <mo>,</mo>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mo>−</mo>\\n \\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mo>−</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\delta =0,-2,-4,-8$</annotation>\\n </semantics></math>, and −16. And for <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>γ</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1.0</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\gamma =1.0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>δ</mi>\\n \\n <mo>=</mo>\\n \\n <mo>-</mo>\\n \\n <mn>2.0</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\delta = \\\\mbox{-} 2.0$</annotation>\\n </semantics></math> the temporal coefficients of friction and heat transmission attain a steady state at time <i>t</i> = 29.88. It is significant that nonlinear convection predominates over viscous dissipation and that nonlinear convection is influenced by magnetic fields. The results are described using plots and tables.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"53 7\",\"pages\":\"3547-3578\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了瞬态磁流体动力学(MHD)流动与二次对流、二阶动量滑移、粘性耗散和牛顿加热的相互作用。在这种情况下,治理方程变得高度非线性。数值求解是利用隐式 Crank-Nicolson 技术实现的。探索的主要目的是找出 MHD 非线性对流和二阶动量滑移对系统整体行为的影响。通过数值计算与现有研究的验证,证明了两者的一致性。在二阶滑移(Ⅳ和-16)时,皮肤摩擦力和努塞尔特数下降。而对于 和 ,摩擦系数和传热系数在时间 t = 29.88 时达到稳定状态。值得注意的是,非线性对流优于粘性耗散,而且非线性对流受到磁场的影响。结果用图表描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viscous dissipative transient MHD nonlinear convective slip flow of second-order with Newtonian heating on a stretching sheet

The current study explores the transient magnetohydrodynamic (MHD) flow with the interaction of quadratic convection, slip of second-order momentum, viscous dissipation, and Newtonian heating. In this setup, the governing equations become highly nonlinear. The numerical solutions are attained by utilizing an implicit type of the Crank–Nicolson technique. The primary aim of the exploration is to figure out the consequence of MHD nonlinear convection and momentum slip of second-order on the overall behavior of the system. The robust agreement is evinced by numerical computations verified against existing research. Skin friction and Nusselt number decreases for second-order slips, δ = 0 , 2 , 4 , 8 $\delta =0,-2,-4,-8$ , and −16. And for γ = 1.0 $\gamma =1.0$ and δ = - 2.0 $\delta = \mbox{-} 2.0$ the temporal coefficients of friction and heat transmission attain a steady state at time t = 29.88. It is significant that nonlinear convection predominates over viscous dissipation and that nonlinear convection is influenced by magnetic fields. The results are described using plots and tables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信