Aastha Arya, Jorge Martinez-Garcia, Philipp Schuetz, Amirhoushang Mahmoudi, Gerrit Brem, Pim A. J. Donkers, Mina Shahi
{"title":"利用显微 X 射线计算机断层扫描表征盐水合物床的变化","authors":"Aastha Arya, Jorge Martinez-Garcia, Philipp Schuetz, Amirhoushang Mahmoudi, Gerrit Brem, Pim A. J. Donkers, Mina Shahi","doi":"10.1007/s10921-024-01092-7","DOIUrl":null,"url":null,"abstract":"<div><p>Thermochemical storage using salt hydrates presents a promising energy storage method. Ensuring the long-term effectiveness of the system is critical, demanding both chemical and mechanical stability of material for repetitive cycling. Challenges arise from agglomeration and volume variations during discharging and charging, impacting the cyclability of thermochemical materials (TCM). For practical usage, the material is often used in a packed bed containing millimetre-sized grains. A micro-level analysis of changes in a packed bed system, along with a deeper understanding involving quantifying bed characteristics, is crucial. In this study, micro X-ray computed tomography (XCT) is used to compare changes in the packed bed before and after cycling the material. Findings indicate a significant decrease in pore size distribution in the bed after 10 cycles and a decrease in porosity from 41.34 to 19.91% accompanied by an increase in grain size, reducing void space. A comparison of effective thermal conductivity between the uncycled and cycled reactor indicates an increase after cycling. Additionally, the effective thermal conductivity is lower in the axial direction compared to the radial. XCT data from uncycled and cycled experiments are further used to observe percolation paths inside the bed. Furthermore, at a system scale fluid flow profile comparison is presented for uncycled and cycled packed beds. It has been observed that the permeability decreased and the pressure drop increased from 0.31 to 4.88 Pa after cycling.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01092-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterizing Changes in a Salt Hydrate Bed Using Micro X-Ray Computed Tomography\",\"authors\":\"Aastha Arya, Jorge Martinez-Garcia, Philipp Schuetz, Amirhoushang Mahmoudi, Gerrit Brem, Pim A. J. Donkers, Mina Shahi\",\"doi\":\"10.1007/s10921-024-01092-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermochemical storage using salt hydrates presents a promising energy storage method. Ensuring the long-term effectiveness of the system is critical, demanding both chemical and mechanical stability of material for repetitive cycling. Challenges arise from agglomeration and volume variations during discharging and charging, impacting the cyclability of thermochemical materials (TCM). For practical usage, the material is often used in a packed bed containing millimetre-sized grains. A micro-level analysis of changes in a packed bed system, along with a deeper understanding involving quantifying bed characteristics, is crucial. In this study, micro X-ray computed tomography (XCT) is used to compare changes in the packed bed before and after cycling the material. Findings indicate a significant decrease in pore size distribution in the bed after 10 cycles and a decrease in porosity from 41.34 to 19.91% accompanied by an increase in grain size, reducing void space. A comparison of effective thermal conductivity between the uncycled and cycled reactor indicates an increase after cycling. Additionally, the effective thermal conductivity is lower in the axial direction compared to the radial. XCT data from uncycled and cycled experiments are further used to observe percolation paths inside the bed. Furthermore, at a system scale fluid flow profile comparison is presented for uncycled and cycled packed beds. It has been observed that the permeability decreased and the pressure drop increased from 0.31 to 4.88 Pa after cycling.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-024-01092-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01092-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01092-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
利用盐水合物进行热化学储能是一种前景广阔的储能方法。确保系统的长期有效性至关重要,这要求材料在重复循环过程中具有化学和机械稳定性。在放电和充电过程中,结块和体积变化会影响热化学材料(TCM)的循环性,从而带来挑战。在实际应用中,这种材料通常用于含有毫米级颗粒的填料床。对填料床系统中的变化进行微观分析,同时深入了解床层的量化特性至关重要。在这项研究中,使用微型 X 射线计算机断层扫描 (XCT) 来比较材料循环前后填料床的变化。研究结果表明,在循环 10 次之后,床层中的孔径分布明显减少,孔隙率从 41.34% 降至 19.91%,同时晶粒尺寸增大,空隙减少。对未循环和循环反应器的有效导热率进行比较后发现,循环后的有效导热率有所增加。此外,轴向的有效热导率低于径向。来自未循环和循环实验的 XCT 数据进一步用于观察床层内部的渗流路径。此外,还对未循环和循环填料床进行了系统规模的流体流动剖面比较。据观察,循环后渗透率降低,压降从 0.31 Pa 增加到 4.88 Pa。
Characterizing Changes in a Salt Hydrate Bed Using Micro X-Ray Computed Tomography
Thermochemical storage using salt hydrates presents a promising energy storage method. Ensuring the long-term effectiveness of the system is critical, demanding both chemical and mechanical stability of material for repetitive cycling. Challenges arise from agglomeration and volume variations during discharging and charging, impacting the cyclability of thermochemical materials (TCM). For practical usage, the material is often used in a packed bed containing millimetre-sized grains. A micro-level analysis of changes in a packed bed system, along with a deeper understanding involving quantifying bed characteristics, is crucial. In this study, micro X-ray computed tomography (XCT) is used to compare changes in the packed bed before and after cycling the material. Findings indicate a significant decrease in pore size distribution in the bed after 10 cycles and a decrease in porosity from 41.34 to 19.91% accompanied by an increase in grain size, reducing void space. A comparison of effective thermal conductivity between the uncycled and cycled reactor indicates an increase after cycling. Additionally, the effective thermal conductivity is lower in the axial direction compared to the radial. XCT data from uncycled and cycled experiments are further used to observe percolation paths inside the bed. Furthermore, at a system scale fluid flow profile comparison is presented for uncycled and cycled packed beds. It has been observed that the permeability decreased and the pressure drop increased from 0.31 to 4.88 Pa after cycling.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.