Da Wang, Wenbin Jia, Yongsheng Li, Ryan Mathur, Xiaofei Yu, Yvhan Lu, Meng Dai, Guang-Sheng Yan
{"title":"中国西北新疆喀喇昆仑地区世界级巨型火烧云非硫化物锌铅矿床的成矿时代","authors":"Da Wang, Wenbin Jia, Yongsheng Li, Ryan Mathur, Xiaofei Yu, Yvhan Lu, Meng Dai, Guang-Sheng Yan","doi":"10.1111/ter.12721","DOIUrl":null,"url":null,"abstract":"Metallogenic geochronology plays a crucial role in the study of ore genesis and mineralization evolution. Unfortunately, accurately determining the metallogenic age of the non‐sulphide Zn–Pb deposits is difficult. Herein, we employed Rb–Sr dating of smithsonite and Sm–Nd dating of coexisting calcite to explore the mineralization ages of the Huoshaoyun Zn–Pb deposit. The Rb–Sr and Sm–Nd isotopic ratios yield isochron ages of 26.6 ± 1.7 and 27.5 ± 7.6 Ma, respectively. These obtained ages are identified as the metallogenic age of the Huoshaoyun deposit. Moreover, investigations into carbonate‐hosted Zn–Pb deposits in the East Tethys Metallogenic belt suggest they have formed in similar tectonic settings and yielded consistent Cenozoic ages. In sum, our research indicates that carbonate‐hosted Pb–Zn metallogenic ages in the East Tethys Metallogenic belt are principally concentrated in the late Palaeogene, and directly related to the collisional orogeny of the Tibetan Plateau during 40–26 Ma.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallogenic age of the world‐class giant huoshaoyun non‐sulphide Zn–Pb deposit in Karakoram Area, Xinjiang, Northwest China\",\"authors\":\"Da Wang, Wenbin Jia, Yongsheng Li, Ryan Mathur, Xiaofei Yu, Yvhan Lu, Meng Dai, Guang-Sheng Yan\",\"doi\":\"10.1111/ter.12721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallogenic geochronology plays a crucial role in the study of ore genesis and mineralization evolution. Unfortunately, accurately determining the metallogenic age of the non‐sulphide Zn–Pb deposits is difficult. Herein, we employed Rb–Sr dating of smithsonite and Sm–Nd dating of coexisting calcite to explore the mineralization ages of the Huoshaoyun Zn–Pb deposit. The Rb–Sr and Sm–Nd isotopic ratios yield isochron ages of 26.6 ± 1.7 and 27.5 ± 7.6 Ma, respectively. These obtained ages are identified as the metallogenic age of the Huoshaoyun deposit. Moreover, investigations into carbonate‐hosted Zn–Pb deposits in the East Tethys Metallogenic belt suggest they have formed in similar tectonic settings and yielded consistent Cenozoic ages. In sum, our research indicates that carbonate‐hosted Pb–Zn metallogenic ages in the East Tethys Metallogenic belt are principally concentrated in the late Palaeogene, and directly related to the collisional orogeny of the Tibetan Plateau during 40–26 Ma.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/ter.12721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/ter.12721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Metallogenic age of the world‐class giant huoshaoyun non‐sulphide Zn–Pb deposit in Karakoram Area, Xinjiang, Northwest China
Metallogenic geochronology plays a crucial role in the study of ore genesis and mineralization evolution. Unfortunately, accurately determining the metallogenic age of the non‐sulphide Zn–Pb deposits is difficult. Herein, we employed Rb–Sr dating of smithsonite and Sm–Nd dating of coexisting calcite to explore the mineralization ages of the Huoshaoyun Zn–Pb deposit. The Rb–Sr and Sm–Nd isotopic ratios yield isochron ages of 26.6 ± 1.7 and 27.5 ± 7.6 Ma, respectively. These obtained ages are identified as the metallogenic age of the Huoshaoyun deposit. Moreover, investigations into carbonate‐hosted Zn–Pb deposits in the East Tethys Metallogenic belt suggest they have formed in similar tectonic settings and yielded consistent Cenozoic ages. In sum, our research indicates that carbonate‐hosted Pb–Zn metallogenic ages in the East Tethys Metallogenic belt are principally concentrated in the late Palaeogene, and directly related to the collisional orogeny of the Tibetan Plateau during 40–26 Ma.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.