Da Wang, Wenbin Jia, Yongsheng Li, Ryan Mathur, Xiaofei Yu, Yvhan Lu, Meng Dai, Guang-Sheng Yan
{"title":"中国西北新疆喀喇昆仑地区世界级巨型火烧云非硫化物锌铅矿床的成矿时代","authors":"Da Wang, Wenbin Jia, Yongsheng Li, Ryan Mathur, Xiaofei Yu, Yvhan Lu, Meng Dai, Guang-Sheng Yan","doi":"10.1111/ter.12721","DOIUrl":null,"url":null,"abstract":"Metallogenic geochronology plays a crucial role in the study of ore genesis and mineralization evolution. Unfortunately, accurately determining the metallogenic age of the non‐sulphide Zn–Pb deposits is difficult. Herein, we employed Rb–Sr dating of smithsonite and Sm–Nd dating of coexisting calcite to explore the mineralization ages of the Huoshaoyun Zn–Pb deposit. The Rb–Sr and Sm–Nd isotopic ratios yield isochron ages of 26.6 ± 1.7 and 27.5 ± 7.6 Ma, respectively. These obtained ages are identified as the metallogenic age of the Huoshaoyun deposit. Moreover, investigations into carbonate‐hosted Zn–Pb deposits in the East Tethys Metallogenic belt suggest they have formed in similar tectonic settings and yielded consistent Cenozoic ages. In sum, our research indicates that carbonate‐hosted Pb–Zn metallogenic ages in the East Tethys Metallogenic belt are principally concentrated in the late Palaeogene, and directly related to the collisional orogeny of the Tibetan Plateau during 40–26 Ma.","PeriodicalId":22260,"journal":{"name":"Terra Nova","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallogenic age of the world‐class giant huoshaoyun non‐sulphide Zn–Pb deposit in Karakoram Area, Xinjiang, Northwest China\",\"authors\":\"Da Wang, Wenbin Jia, Yongsheng Li, Ryan Mathur, Xiaofei Yu, Yvhan Lu, Meng Dai, Guang-Sheng Yan\",\"doi\":\"10.1111/ter.12721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallogenic geochronology plays a crucial role in the study of ore genesis and mineralization evolution. Unfortunately, accurately determining the metallogenic age of the non‐sulphide Zn–Pb deposits is difficult. Herein, we employed Rb–Sr dating of smithsonite and Sm–Nd dating of coexisting calcite to explore the mineralization ages of the Huoshaoyun Zn–Pb deposit. The Rb–Sr and Sm–Nd isotopic ratios yield isochron ages of 26.6 ± 1.7 and 27.5 ± 7.6 Ma, respectively. These obtained ages are identified as the metallogenic age of the Huoshaoyun deposit. Moreover, investigations into carbonate‐hosted Zn–Pb deposits in the East Tethys Metallogenic belt suggest they have formed in similar tectonic settings and yielded consistent Cenozoic ages. In sum, our research indicates that carbonate‐hosted Pb–Zn metallogenic ages in the East Tethys Metallogenic belt are principally concentrated in the late Palaeogene, and directly related to the collisional orogeny of the Tibetan Plateau during 40–26 Ma.\",\"PeriodicalId\":22260,\"journal\":{\"name\":\"Terra Nova\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Terra Nova\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/ter.12721\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terra Nova","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/ter.12721","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Metallogenic age of the world‐class giant huoshaoyun non‐sulphide Zn–Pb deposit in Karakoram Area, Xinjiang, Northwest China
Metallogenic geochronology plays a crucial role in the study of ore genesis and mineralization evolution. Unfortunately, accurately determining the metallogenic age of the non‐sulphide Zn–Pb deposits is difficult. Herein, we employed Rb–Sr dating of smithsonite and Sm–Nd dating of coexisting calcite to explore the mineralization ages of the Huoshaoyun Zn–Pb deposit. The Rb–Sr and Sm–Nd isotopic ratios yield isochron ages of 26.6 ± 1.7 and 27.5 ± 7.6 Ma, respectively. These obtained ages are identified as the metallogenic age of the Huoshaoyun deposit. Moreover, investigations into carbonate‐hosted Zn–Pb deposits in the East Tethys Metallogenic belt suggest they have formed in similar tectonic settings and yielded consistent Cenozoic ages. In sum, our research indicates that carbonate‐hosted Pb–Zn metallogenic ages in the East Tethys Metallogenic belt are principally concentrated in the late Palaeogene, and directly related to the collisional orogeny of the Tibetan Plateau during 40–26 Ma.
期刊介绍:
Terra Nova publishes short, innovative and provocative papers of interest to a wide readership and covering the broadest spectrum of the Solid Earth and Planetary Sciences. Terra Nova encompasses geology, geophysics and geochemistry, and extends to the fluid envelopes (atmosphere, ocean, environment) whenever coupling with the Solid Earth is involved.