Guangzu Zhou, Linfang Qian, Quan Zou, Le Sun, Kai Wei
{"title":"带干扰观测器的链式旋转弹壳库的鲁棒广义预测位置控制","authors":"Guangzu Zhou, Linfang Qian, Quan Zou, Le Sun, Kai Wei","doi":"10.1049/elp2.12457","DOIUrl":null,"url":null,"abstract":"<p>The realisation of fast position tracking control and strong robust control of the chain-type rotary shell magazine in the complex systems such as the large calibre howitzer has been the focus and challenge of research. The predictive control strategies can achieve a fast dynamic response, but it relies on the system model. By integrating the generalised predictive control method with sliding mode theory, a novel robust generalised predictive position control method is proposed. Firstly, a non-cascade position tracking controller is designed based on the continuous-time model of the systems; then, a sliding mode compensation structure is introduced to address the degradation of control performance due to load variations and external disturbances. The scheme utilises the sliding mode switching term to overcome the effects caused by the disturbances while preserving the fast dynamic response characteristics of the original predictive control. Moreover, the disturbance observer is designed to further enhance the robustness by producing corresponding compensation according to the perturbation quantity. The proposed controller has been validated in a shell magazine test bench, indicating its superior position control performance of the shell magazine under different load conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12457","citationCount":"0","resultStr":"{\"title\":\"Robust generalised predictive position control for chain-type rotary shell magazine with disturbance observer\",\"authors\":\"Guangzu Zhou, Linfang Qian, Quan Zou, Le Sun, Kai Wei\",\"doi\":\"10.1049/elp2.12457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The realisation of fast position tracking control and strong robust control of the chain-type rotary shell magazine in the complex systems such as the large calibre howitzer has been the focus and challenge of research. The predictive control strategies can achieve a fast dynamic response, but it relies on the system model. By integrating the generalised predictive control method with sliding mode theory, a novel robust generalised predictive position control method is proposed. Firstly, a non-cascade position tracking controller is designed based on the continuous-time model of the systems; then, a sliding mode compensation structure is introduced to address the degradation of control performance due to load variations and external disturbances. The scheme utilises the sliding mode switching term to overcome the effects caused by the disturbances while preserving the fast dynamic response characteristics of the original predictive control. Moreover, the disturbance observer is designed to further enhance the robustness by producing corresponding compensation according to the perturbation quantity. The proposed controller has been validated in a shell magazine test bench, indicating its superior position control performance of the shell magazine under different load conditions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12457\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12457\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12457","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Robust generalised predictive position control for chain-type rotary shell magazine with disturbance observer
The realisation of fast position tracking control and strong robust control of the chain-type rotary shell magazine in the complex systems such as the large calibre howitzer has been the focus and challenge of research. The predictive control strategies can achieve a fast dynamic response, but it relies on the system model. By integrating the generalised predictive control method with sliding mode theory, a novel robust generalised predictive position control method is proposed. Firstly, a non-cascade position tracking controller is designed based on the continuous-time model of the systems; then, a sliding mode compensation structure is introduced to address the degradation of control performance due to load variations and external disturbances. The scheme utilises the sliding mode switching term to overcome the effects caused by the disturbances while preserving the fast dynamic response characteristics of the original predictive control. Moreover, the disturbance observer is designed to further enhance the robustness by producing corresponding compensation according to the perturbation quantity. The proposed controller has been validated in a shell magazine test bench, indicating its superior position control performance of the shell magazine under different load conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.