{"title":"双四环型硅酸铝分子作为沸石合成单源前驱体的实验验证","authors":"Akira Imaizumi, Yurika Ohnishi, Akinobu Nakada, Akinori Honda, Takeshi Matsumoto, Kenji Katayama, Ho-Chol Chang","doi":"10.1093/bulcsj/uoae060","DOIUrl":null,"url":null,"abstract":"\n While a variety of functional zeolites have been synthesized using hydrothermal methods with conventional discrete Al and Si sources, control of the composition, structure, and function of the targeted zeolites often involves costly and time-consuming trial-and-error approaches. Despite ongoing efforts to manipulate zeolite formation by adjusting Al and Si sources and reaction conditions, limited attention has been given to studies on zeolite synthesis using molecular precursors (MPs) with pre-organized Al–O–Si bonds. Here, we demonstrate the synthesis of LTA-type zeolites using [TMA]4[Al4Si4O12(OH)8]·13H2O ([MP]; TMA = tetramethylammonium cation) with a double-four-ring (D4R)-type core structure, which is known to be a secondary building unit (SBU) in the LTA-type zeolite, as a MP. Here, we demonstrate the successful synthesis of LTA-type zeolites using [MP] under hydrothermal conditions at 100–200 °C in the presence of 1 equivalent of NaOH or NaCl. Notably, when discrete Al and Si sources were used instead of [MP] under otherwise identical conditions (the same Si/Al ratio, Na+ content, and temperature), GIS-, SOD-, and FAU-type zeolites lacking the D4R structure were obtained in addition to the LTA-type zeolites.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental verification of double-four-ring-type aluminosilicate molecule as a single-source precursor for zeolite synthesis\",\"authors\":\"Akira Imaizumi, Yurika Ohnishi, Akinobu Nakada, Akinori Honda, Takeshi Matsumoto, Kenji Katayama, Ho-Chol Chang\",\"doi\":\"10.1093/bulcsj/uoae060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n While a variety of functional zeolites have been synthesized using hydrothermal methods with conventional discrete Al and Si sources, control of the composition, structure, and function of the targeted zeolites often involves costly and time-consuming trial-and-error approaches. Despite ongoing efforts to manipulate zeolite formation by adjusting Al and Si sources and reaction conditions, limited attention has been given to studies on zeolite synthesis using molecular precursors (MPs) with pre-organized Al–O–Si bonds. Here, we demonstrate the synthesis of LTA-type zeolites using [TMA]4[Al4Si4O12(OH)8]·13H2O ([MP]; TMA = tetramethylammonium cation) with a double-four-ring (D4R)-type core structure, which is known to be a secondary building unit (SBU) in the LTA-type zeolite, as a MP. Here, we demonstrate the successful synthesis of LTA-type zeolites using [MP] under hydrothermal conditions at 100–200 °C in the presence of 1 equivalent of NaOH or NaCl. Notably, when discrete Al and Si sources were used instead of [MP] under otherwise identical conditions (the same Si/Al ratio, Na+ content, and temperature), GIS-, SOD-, and FAU-type zeolites lacking the D4R structure were obtained in addition to the LTA-type zeolites.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/bulcsj/uoae060\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/bulcsj/uoae060","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Experimental verification of double-four-ring-type aluminosilicate molecule as a single-source precursor for zeolite synthesis
While a variety of functional zeolites have been synthesized using hydrothermal methods with conventional discrete Al and Si sources, control of the composition, structure, and function of the targeted zeolites often involves costly and time-consuming trial-and-error approaches. Despite ongoing efforts to manipulate zeolite formation by adjusting Al and Si sources and reaction conditions, limited attention has been given to studies on zeolite synthesis using molecular precursors (MPs) with pre-organized Al–O–Si bonds. Here, we demonstrate the synthesis of LTA-type zeolites using [TMA]4[Al4Si4O12(OH)8]·13H2O ([MP]; TMA = tetramethylammonium cation) with a double-four-ring (D4R)-type core structure, which is known to be a secondary building unit (SBU) in the LTA-type zeolite, as a MP. Here, we demonstrate the successful synthesis of LTA-type zeolites using [MP] under hydrothermal conditions at 100–200 °C in the presence of 1 equivalent of NaOH or NaCl. Notably, when discrete Al and Si sources were used instead of [MP] under otherwise identical conditions (the same Si/Al ratio, Na+ content, and temperature), GIS-, SOD-, and FAU-type zeolites lacking the D4R structure were obtained in addition to the LTA-type zeolites.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico