用表示法表征可嵌入 AF 的 $$C^*$-gebras

IF 0.6 3区 数学 Q3 MATHEMATICS
Y. Liu
{"title":"用表示法表征可嵌入 AF 的 $$C^*$-gebras","authors":"Y. Liu","doi":"10.1007/s10474-024-01442-x","DOIUrl":null,"url":null,"abstract":"<div><p>A major open problem of AF-embedding is whether every separable exact quasidiagonal <span>\\(C^*\\)</span>-algebra can be embedded into an AF-algebra. In this paper we characterize AF-embeddable <span>\\(C^*\\)</span>-algebras by representations to observe their similarity to the separable exact quasidiagonal <span>\\(C^*\\)</span>-algebras. As an application, we show that every separable exact quasidiagonal <span>\\(C^*\\)</span>-algebra is AF-embeddable if and only if every faithful essential representation of a separable exact quasidiagonal <span>\\(C^*\\)</span>-algebra is a certain kind of <span>\\(*\\)</span>-representation. We also show that a separable <span>\\(C^*\\)</span>-algebra is AF-embeddable if and only if it can be embedded into a particular <span>\\(C^*\\)</span>-algebra.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 1","pages":"139 - 153"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing AF-embeddable \\\\(C^*\\\\)-algebras by representations\",\"authors\":\"Y. Liu\",\"doi\":\"10.1007/s10474-024-01442-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A major open problem of AF-embedding is whether every separable exact quasidiagonal <span>\\\\(C^*\\\\)</span>-algebra can be embedded into an AF-algebra. In this paper we characterize AF-embeddable <span>\\\\(C^*\\\\)</span>-algebras by representations to observe their similarity to the separable exact quasidiagonal <span>\\\\(C^*\\\\)</span>-algebras. As an application, we show that every separable exact quasidiagonal <span>\\\\(C^*\\\\)</span>-algebra is AF-embeddable if and only if every faithful essential representation of a separable exact quasidiagonal <span>\\\\(C^*\\\\)</span>-algebra is a certain kind of <span>\\\\(*\\\\)</span>-representation. We also show that a separable <span>\\\\(C^*\\\\)</span>-algebra is AF-embeddable if and only if it can be embedded into a particular <span>\\\\(C^*\\\\)</span>-algebra.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"173 1\",\"pages\":\"139 - 153\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01442-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01442-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

AF-嵌入的一个主要未决问题是,是否每个可分离的精确准对边 \(C^*\)- 代数都可以嵌入到一个 AF- 代数中。在本文中,我们通过表示法描述了可AF嵌入的\(C^*\)-代数的特征,以观察它们与可分离的精确准对角\(C^*\)-代数的相似性。作为应用,我们证明了当且仅当可分离精确准对角\(C^*\)-代数的每个忠实本质表示都是某种\(*\)-表示时,每个可分离精确准对角\(C^*\)-代数都是可AF-嵌入的。我们还证明,当且仅当一个可分离的(C^*\)-代数可以嵌入到一个特定的(C^*\)-代数中时,它才是可嵌入的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing AF-embeddable \(C^*\)-algebras by representations

A major open problem of AF-embedding is whether every separable exact quasidiagonal \(C^*\)-algebra can be embedded into an AF-algebra. In this paper we characterize AF-embeddable \(C^*\)-algebras by representations to observe their similarity to the separable exact quasidiagonal \(C^*\)-algebras. As an application, we show that every separable exact quasidiagonal \(C^*\)-algebra is AF-embeddable if and only if every faithful essential representation of a separable exact quasidiagonal \(C^*\)-algebra is a certain kind of \(*\)-representation. We also show that a separable \(C^*\)-algebra is AF-embeddable if and only if it can be embedded into a particular \(C^*\)-algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信