H. Vu, Nhu Nam Pham, Tien Tu Bui, Minh Duc Vu, T. Nguyen
{"title":"FG-GPLRC 浅球形盖和带多孔核心的圆板非线性电热力学动态响应的新半分析方法","authors":"H. Vu, Nhu Nam Pham, Tien Tu Bui, Minh Duc Vu, T. Nguyen","doi":"10.1177/08927057241259760","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to analyze the nonlinear electro-thermo-mechanical dynamic buckling and vibration of third-order shear deformable circular plates and spherical caps with functionally graded graphene platelet reinforced composite (FG-GPLRC) coatings, piezoelectric layers, and porous core. The circular plates and spherical caps are assumed to be rested on the Pasternak visco-elastic foundation, and subjected to dynamic external pressure in the thermal environment. The total potential energy expression of structures is established using the Lagrange function. The Euler-Lagrange equations and Rayleigh dispassion functions are applied to obtain the motion equation of structures. This motion equation can be solved using the Runge-Kutta method to obtain the dynamic responses of circular plates and spherical caps. Significant discussions of the different effects of graphene distribution, graphene volume fraction, piezoelectric layers, porous core, and foundation parameters are presented through the investigated examples.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"188 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new semi-analytical approach for nonlinear electro-thermo-mechanical dynamic responses of FG-GPLRC shallow spherical caps and circular plates with porous core\",\"authors\":\"H. Vu, Nhu Nam Pham, Tien Tu Bui, Minh Duc Vu, T. Nguyen\",\"doi\":\"10.1177/08927057241259760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this paper is to analyze the nonlinear electro-thermo-mechanical dynamic buckling and vibration of third-order shear deformable circular plates and spherical caps with functionally graded graphene platelet reinforced composite (FG-GPLRC) coatings, piezoelectric layers, and porous core. The circular plates and spherical caps are assumed to be rested on the Pasternak visco-elastic foundation, and subjected to dynamic external pressure in the thermal environment. The total potential energy expression of structures is established using the Lagrange function. The Euler-Lagrange equations and Rayleigh dispassion functions are applied to obtain the motion equation of structures. This motion equation can be solved using the Runge-Kutta method to obtain the dynamic responses of circular plates and spherical caps. Significant discussions of the different effects of graphene distribution, graphene volume fraction, piezoelectric layers, porous core, and foundation parameters are presented through the investigated examples.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"188 \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057241259760\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241259760","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A new semi-analytical approach for nonlinear electro-thermo-mechanical dynamic responses of FG-GPLRC shallow spherical caps and circular plates with porous core
The main aim of this paper is to analyze the nonlinear electro-thermo-mechanical dynamic buckling and vibration of third-order shear deformable circular plates and spherical caps with functionally graded graphene platelet reinforced composite (FG-GPLRC) coatings, piezoelectric layers, and porous core. The circular plates and spherical caps are assumed to be rested on the Pasternak visco-elastic foundation, and subjected to dynamic external pressure in the thermal environment. The total potential energy expression of structures is established using the Lagrange function. The Euler-Lagrange equations and Rayleigh dispassion functions are applied to obtain the motion equation of structures. This motion equation can be solved using the Runge-Kutta method to obtain the dynamic responses of circular plates and spherical caps. Significant discussions of the different effects of graphene distribution, graphene volume fraction, piezoelectric layers, porous core, and foundation parameters are presented through the investigated examples.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico