Mark A. Dietenberger, Samuel V. Glass, Charles R. Boardman
{"title":"纤维素材料中水蒸气吸附的综合分析吸附热力学(CAST)模型","authors":"Mark A. Dietenberger, Samuel V. Glass, Charles R. Boardman","doi":"10.1007/s10450-024-00495-2","DOIUrl":null,"url":null,"abstract":"<div><p>Water vapor sorption is a fundamental property of cellulosic materials. Numerous theoretical and empirical models have been developed to describe the relationship between water activity, temperature, and equilibrium moisture content (EMC). However, a meaningful connection between model parameters and thermodynamic properties related to the sorption process is often lacking. In cases where models yield thermodynamic properties, such as through use of the Clausius-Clapeyron equation, these are limited to temperatures where the ideal gas equation is applicable. In this paper we advance a thermodynamic framework and formulate a new semi-empirical sorption model based on the differential Gibbs energy of sorption as a function of EMC and temperature, intended for high temperature applications such as steam drying or fire modeling. We refer to this as the Comprehensive Analytical Sorption Thermodynamic (CAST) model. It has six parameters, includes temperature explicitly, and is invertible. The CAST model includes analytical equations for the differential enthalpy of sorption, the differential entropy of sorption, and the integral heat of wetting. The model is evaluated using sorption data and calorimetric data over a range of temperatures from the wood science literature and compared with several existing models. Overall, the CAST model fits the experimental sorption and calorimetric data with higher accuracy than existing models.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"1251 - 1271"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analytical Sorption Thermodynamic (CAST) model for water vapor sorption in cellulosic materials\",\"authors\":\"Mark A. Dietenberger, Samuel V. Glass, Charles R. Boardman\",\"doi\":\"10.1007/s10450-024-00495-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water vapor sorption is a fundamental property of cellulosic materials. Numerous theoretical and empirical models have been developed to describe the relationship between water activity, temperature, and equilibrium moisture content (EMC). However, a meaningful connection between model parameters and thermodynamic properties related to the sorption process is often lacking. In cases where models yield thermodynamic properties, such as through use of the Clausius-Clapeyron equation, these are limited to temperatures where the ideal gas equation is applicable. In this paper we advance a thermodynamic framework and formulate a new semi-empirical sorption model based on the differential Gibbs energy of sorption as a function of EMC and temperature, intended for high temperature applications such as steam drying or fire modeling. We refer to this as the Comprehensive Analytical Sorption Thermodynamic (CAST) model. It has six parameters, includes temperature explicitly, and is invertible. The CAST model includes analytical equations for the differential enthalpy of sorption, the differential entropy of sorption, and the integral heat of wetting. The model is evaluated using sorption data and calorimetric data over a range of temperatures from the wood science literature and compared with several existing models. Overall, the CAST model fits the experimental sorption and calorimetric data with higher accuracy than existing models.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"1251 - 1271\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00495-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00495-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Comprehensive Analytical Sorption Thermodynamic (CAST) model for water vapor sorption in cellulosic materials
Water vapor sorption is a fundamental property of cellulosic materials. Numerous theoretical and empirical models have been developed to describe the relationship between water activity, temperature, and equilibrium moisture content (EMC). However, a meaningful connection between model parameters and thermodynamic properties related to the sorption process is often lacking. In cases where models yield thermodynamic properties, such as through use of the Clausius-Clapeyron equation, these are limited to temperatures where the ideal gas equation is applicable. In this paper we advance a thermodynamic framework and formulate a new semi-empirical sorption model based on the differential Gibbs energy of sorption as a function of EMC and temperature, intended for high temperature applications such as steam drying or fire modeling. We refer to this as the Comprehensive Analytical Sorption Thermodynamic (CAST) model. It has six parameters, includes temperature explicitly, and is invertible. The CAST model includes analytical equations for the differential enthalpy of sorption, the differential entropy of sorption, and the integral heat of wetting. The model is evaluated using sorption data and calorimetric data over a range of temperatures from the wood science literature and compared with several existing models. Overall, the CAST model fits the experimental sorption and calorimetric data with higher accuracy than existing models.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.