Rajan B. Adhikari, Imbumn Kim, Young Ju Lee, Dongwoo Sheen
{"title":"达西流的高效通量变量近似方案","authors":"Rajan B. Adhikari, Imbumn Kim, Young Ju Lee, Dongwoo Sheen","doi":"10.1002/num.23120","DOIUrl":null,"url":null,"abstract":"We present an efficient numerical method to approximate the flux variable for the Darcy flow model. An important feature of our new method is that the approximate solution for the flux variable is obtained without approximating the pressure at all. To accomplish this, we introduce a user‐defined parameter delta, which is typically chosen to be small so that it minimizes the negative effect resulting from the absence of the pressure, such as inaccuracy in both the flux approximation and the mass conservation. The resulting algebraic system is of significantly smaller degrees of freedom, compared to the one from the mixed finite element methods or least‐squares methods. We also interpret the proposed method as a single step iterate of the augmented Lagrangian Uzawa applied to solve the mixed finite element in a special setting. Lastly, the pressure recovery from the flux variable is discussed and an optimal‐order error estimate for the method is obtained. Several examples are provided to verify the proposed theory and algorithm, some of which are from more realistic models such as SPE10.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient flux‐variable approximation scheme for Darcy's flow\",\"authors\":\"Rajan B. Adhikari, Imbumn Kim, Young Ju Lee, Dongwoo Sheen\",\"doi\":\"10.1002/num.23120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient numerical method to approximate the flux variable for the Darcy flow model. An important feature of our new method is that the approximate solution for the flux variable is obtained without approximating the pressure at all. To accomplish this, we introduce a user‐defined parameter delta, which is typically chosen to be small so that it minimizes the negative effect resulting from the absence of the pressure, such as inaccuracy in both the flux approximation and the mass conservation. The resulting algebraic system is of significantly smaller degrees of freedom, compared to the one from the mixed finite element methods or least‐squares methods. We also interpret the proposed method as a single step iterate of the augmented Lagrangian Uzawa applied to solve the mixed finite element in a special setting. Lastly, the pressure recovery from the flux variable is discussed and an optimal‐order error estimate for the method is obtained. Several examples are provided to verify the proposed theory and algorithm, some of which are from more realistic models such as SPE10.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
An efficient flux‐variable approximation scheme for Darcy's flow
We present an efficient numerical method to approximate the flux variable for the Darcy flow model. An important feature of our new method is that the approximate solution for the flux variable is obtained without approximating the pressure at all. To accomplish this, we introduce a user‐defined parameter delta, which is typically chosen to be small so that it minimizes the negative effect resulting from the absence of the pressure, such as inaccuracy in both the flux approximation and the mass conservation. The resulting algebraic system is of significantly smaller degrees of freedom, compared to the one from the mixed finite element methods or least‐squares methods. We also interpret the proposed method as a single step iterate of the augmented Lagrangian Uzawa applied to solve the mixed finite element in a special setting. Lastly, the pressure recovery from the flux variable is discussed and an optimal‐order error estimate for the method is obtained. Several examples are provided to verify the proposed theory and algorithm, some of which are from more realistic models such as SPE10.