混杂因素非随机缺失的非参数因果推断

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawei Shan, Xinyu Yan
{"title":"混杂因素非随机缺失的非参数因果推断","authors":"Jiawei Shan, Xinyu Yan","doi":"10.1111/stan.12343","DOIUrl":null,"url":null,"abstract":"We consider the estimation and inference of Average Causal Effects (ACE) when confounders are missing not at random. The identification has been discussed in literature; however, limited effort has been devoted into developing feasible nonparametric inference methods. The primary challenge arises from the estimation process of the missingness mechanism, an ill‐posed problem that poses obstacles in establishing asymptotic theory. This paper contributes to filling this gap in the following ways. Firstly, we introduce a weak pseudo‐metric to guarantee a faster convergence rate of the missingness mechanism estimator. Secondly, we employ a representer to derive the explicit expression of the influence function. We also propose a practical and stable approach to estimate the variance and construct the confidence interval. We verify our theoretical results in the simulation studies.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric causal inference with confounders missing not at random\",\"authors\":\"Jiawei Shan, Xinyu Yan\",\"doi\":\"10.1111/stan.12343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the estimation and inference of Average Causal Effects (ACE) when confounders are missing not at random. The identification has been discussed in literature; however, limited effort has been devoted into developing feasible nonparametric inference methods. The primary challenge arises from the estimation process of the missingness mechanism, an ill‐posed problem that poses obstacles in establishing asymptotic theory. This paper contributes to filling this gap in the following ways. Firstly, we introduce a weak pseudo‐metric to guarantee a faster convergence rate of the missingness mechanism estimator. Secondly, we employ a representer to derive the explicit expression of the influence function. We also propose a practical and stable approach to estimate the variance and construct the confidence interval. We verify our theoretical results in the simulation studies.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12343\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12343","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是当混杂因素非随机缺失时,平均因果效应(ACE)的估计和推断。文献中已经讨论了这种识别方法,但在开发可行的非参数推断方法方面所做的努力还很有限。主要的挑战来自于缺失机制的估计过程,这是一个难以解决的问题,给建立渐近理论造成了障碍。本文从以下几个方面填补了这一空白。首先,我们引入了一个弱伪度量,以保证遗漏机制估计器更快的收敛速度。其次,我们利用表示器推导出影响函数的明确表达式。我们还提出了一种实用而稳定的方法来估计方差和构建置信区间。我们在模拟研究中验证了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric causal inference with confounders missing not at random
We consider the estimation and inference of Average Causal Effects (ACE) when confounders are missing not at random. The identification has been discussed in literature; however, limited effort has been devoted into developing feasible nonparametric inference methods. The primary challenge arises from the estimation process of the missingness mechanism, an ill‐posed problem that poses obstacles in establishing asymptotic theory. This paper contributes to filling this gap in the following ways. Firstly, we introduce a weak pseudo‐metric to guarantee a faster convergence rate of the missingness mechanism estimator. Secondly, we employ a representer to derive the explicit expression of the influence function. We also propose a practical and stable approach to estimate the variance and construct the confidence interval. We verify our theoretical results in the simulation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信