2017 年 7.3 级 Sarpol-e Zahab 地震后摩擦性后滑所照亮的斜面-平面和展布断层

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zelong Guo, M. Baes, M. Motagh
{"title":"2017 年 7.3 级 Sarpol-e Zahab 地震后摩擦性后滑所照亮的斜面-平面和展布断层","authors":"Zelong Guo, M. Baes, M. Motagh","doi":"10.1785/0220230425","DOIUrl":null,"url":null,"abstract":"\n As the largest instrumentally recorded earthquake in the fold-and-thrust belt of the northwestern Zagros mountain so far, the fault structure of the 2017 Mw 7.3 Sarpol-e Zahab earthquake and its contribution to regional crustal shortening remain controversial. Here, we utilize the integration of Interferometric Synthetic Aperture Radar observations and 2D finite element models incorporating various fault geometries such as planar faults, ramp-flat faults, and the combined models of ramp-flat and splay faults to explore frictional afterslip process due to coseismic stress changes following the mainshock. Our findings suggest that a ramp-flat frictional afterslip model, characterized by the maximum afterslip of ∼1.0 m and frictional variations (Δμ) of ∼0.001 and ∼0.0002 for the up-dip and down-dip portions, respectively, better explains the long-wavelength postseismic deformation than planar fault models. However, an integration model of a ramp-flat and a splay fault further improves the model fit, although the splay fault’s frictional slip is limited to <0.2 m, which is much smaller than that on the ramp-flat part (∼0.9 m). Considering the relocated aftershocks and structural cross-sections, the combined model could be best attributed to fault slip on the blind Mountain Front fault. Our findings thus suggest the complexity of the fault interactions between the basement and sedimentary cover in the Zagros, and that this largest basement-involved event in the region contributes to both thick- and thin-skinned shortening via seismic and aseismic behaviors, respectively.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramp-Flat and Splay Faulting Illuminated by Frictional Afterslip Following the 2017 Mw 7.3 Sarpol-e Zahab Earthquake\",\"authors\":\"Zelong Guo, M. Baes, M. Motagh\",\"doi\":\"10.1785/0220230425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As the largest instrumentally recorded earthquake in the fold-and-thrust belt of the northwestern Zagros mountain so far, the fault structure of the 2017 Mw 7.3 Sarpol-e Zahab earthquake and its contribution to regional crustal shortening remain controversial. Here, we utilize the integration of Interferometric Synthetic Aperture Radar observations and 2D finite element models incorporating various fault geometries such as planar faults, ramp-flat faults, and the combined models of ramp-flat and splay faults to explore frictional afterslip process due to coseismic stress changes following the mainshock. Our findings suggest that a ramp-flat frictional afterslip model, characterized by the maximum afterslip of ∼1.0 m and frictional variations (Δμ) of ∼0.001 and ∼0.0002 for the up-dip and down-dip portions, respectively, better explains the long-wavelength postseismic deformation than planar fault models. However, an integration model of a ramp-flat and a splay fault further improves the model fit, although the splay fault’s frictional slip is limited to <0.2 m, which is much smaller than that on the ramp-flat part (∼0.9 m). Considering the relocated aftershocks and structural cross-sections, the combined model could be best attributed to fault slip on the blind Mountain Front fault. Our findings thus suggest the complexity of the fault interactions between the basement and sedimentary cover in the Zagros, and that this largest basement-involved event in the region contributes to both thick- and thin-skinned shortening via seismic and aseismic behaviors, respectively.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0220230425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

作为迄今为止扎格罗斯山脉西北部褶皱-推覆带有仪器记录的最大地震,2017 年 7.3 级 Sarpol-e Zahab 地震的断层结构及其对区域地壳缩短的贡献仍存在争议。在此,我们利用干涉合成孔径雷达观测数据与二维有限元模型的整合,结合平面断层、斜坡平断层以及斜坡平断层与花岗岩断层组合模型等各种断层几何结构,探索主震后同震应力变化引起的摩擦后滑移过程。我们的研究结果表明,与平面断层模型相比,斜面-平面摩擦后滑模型能更好地解释地震后的长波变形,其最大后滑量为∼1.0 m,上倾和下倾部分的摩擦力变化(Δμ)分别为∼0.001和∼0.0002。然而,斜面平面断层和斜面断层的整合模型进一步提高了模型的拟合度,尽管斜面断层的摩擦滑移被限制在<0.2 m,远小于斜面平面部分的摩擦滑移(∼0.9 m)。考虑到余震和结构横截面的重新定位,综合模型可以最好地归结为山前盲断层的断层滑动。因此,我们的研究结果表明了扎格罗斯地区基底与沉积覆盖层之间断层相互作用的复杂性,而且该地区最大的基底参与事件分别通过地震和无地震行为造成了厚皮和薄皮缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramp-Flat and Splay Faulting Illuminated by Frictional Afterslip Following the 2017 Mw 7.3 Sarpol-e Zahab Earthquake
As the largest instrumentally recorded earthquake in the fold-and-thrust belt of the northwestern Zagros mountain so far, the fault structure of the 2017 Mw 7.3 Sarpol-e Zahab earthquake and its contribution to regional crustal shortening remain controversial. Here, we utilize the integration of Interferometric Synthetic Aperture Radar observations and 2D finite element models incorporating various fault geometries such as planar faults, ramp-flat faults, and the combined models of ramp-flat and splay faults to explore frictional afterslip process due to coseismic stress changes following the mainshock. Our findings suggest that a ramp-flat frictional afterslip model, characterized by the maximum afterslip of ∼1.0 m and frictional variations (Δμ) of ∼0.001 and ∼0.0002 for the up-dip and down-dip portions, respectively, better explains the long-wavelength postseismic deformation than planar fault models. However, an integration model of a ramp-flat and a splay fault further improves the model fit, although the splay fault’s frictional slip is limited to <0.2 m, which is much smaller than that on the ramp-flat part (∼0.9 m). Considering the relocated aftershocks and structural cross-sections, the combined model could be best attributed to fault slip on the blind Mountain Front fault. Our findings thus suggest the complexity of the fault interactions between the basement and sedimentary cover in the Zagros, and that this largest basement-involved event in the region contributes to both thick- and thin-skinned shortening via seismic and aseismic behaviors, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信