关于有限元的非线性几何变换

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Claudio M. Perez, Filip C. Filippou
{"title":"关于有限元的非线性几何变换","authors":"Claudio M. Perez,&nbsp;Filip C. Filippou","doi":"10.1002/nme.7506","DOIUrl":null,"url":null,"abstract":"<p>The paper develops a systematic procedure for formulating finite elements on manifolds. The theoretical developments give rise to a modular computational framework for composing coordinate transformations and manifold parameterizations. The procedure is demonstrated with the Cosserat rod model furnishing a novel finite element formulation that rectifies the lack of objectivity of existing finite elements <i>without</i> violating the director constraints or compromising the symmetry of the tangent stiffness at equilibrium. The framework is element-independent, allowing its implementation as a wrapper to existing element libraries without modification of the element state determination procedures.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nonlinear geometric transformations of finite elements\",\"authors\":\"Claudio M. Perez,&nbsp;Filip C. Filippou\",\"doi\":\"10.1002/nme.7506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper develops a systematic procedure for formulating finite elements on manifolds. The theoretical developments give rise to a modular computational framework for composing coordinate transformations and manifold parameterizations. The procedure is demonstrated with the Cosserat rod model furnishing a novel finite element formulation that rectifies the lack of objectivity of existing finite elements <i>without</i> violating the director constraints or compromising the symmetry of the tangent stiffness at equilibrium. The framework is element-independent, allowing its implementation as a wrapper to existing element libraries without modification of the element state determination procedures.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7506\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7506","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了在流形上制定有限元的系统程序。理论发展产生了一个模块化计算框架,用于组合坐标变换和流形参数化。该程序以 Cosserat 杆件模型为例作了演示,提供了一种新颖的有限元表述方法,纠正了现有有限元缺乏客观性的问题,同时又不违反导向约束或损害平衡时切线刚度的对称性。该框架与元素无关,可作为现有元素库的封装程序而实施,无需修改元素状态确定程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On nonlinear geometric transformations of finite elements

The paper develops a systematic procedure for formulating finite elements on manifolds. The theoretical developments give rise to a modular computational framework for composing coordinate transformations and manifold parameterizations. The procedure is demonstrated with the Cosserat rod model furnishing a novel finite element formulation that rectifies the lack of objectivity of existing finite elements without violating the director constraints or compromising the symmetry of the tangent stiffness at equilibrium. The framework is element-independent, allowing its implementation as a wrapper to existing element libraries without modification of the element state determination procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信