多时间尺度模板匹配:在不同的火山环境中发现喷发前兆

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Ardid, D. Dempsey, Josh Corry, Owen Garrett, Oliver D. Lamb, S. Cronin
{"title":"多时间尺度模板匹配:在不同的火山环境中发现喷发前兆","authors":"A. Ardid, D. Dempsey, Josh Corry, Owen Garrett, Oliver D. Lamb, S. Cronin","doi":"10.1785/0220240012","DOIUrl":null,"url":null,"abstract":"\n Volcanic eruptions pose significant risks, demanding precise monitoring for timely hazard mitigation. However, interpreting noisy seismic data for eruptive precursors remains challenging. This study introduces a novel methodology that extends an earlier time-series feature engineering approach to include template matching against prior eruptions. We aim to identify subtle signals within seismic data to enhance our understanding of volcanic activity and future hazards. To do this, we analyze the continuous seismic record at a volcano and identify the time-series elements that regularly precede eruptions and the timescales over which these are observable. We conduct tests across various time lengths, ranging from 1 to 60 days. For Copahue (Chile/Argentina), Pavlof (Alaska), Bezymianny (Russia), and Whakaari (New Zealand) volcanoes, we confirm statistically significant eruption precursors. In particular, a feature named change quantiles (0.2–0.8), which is related to the conditional dynamics of surface acceleration at the volcano, emerges as a key indicator of future eruptions over 14-day timescales. This research offers new methods for real-time seismovolcanic monitoring, minimizing the effects of unknown, spurious noise, and discerning recurrent patterns through template matching. By providing deeper insights into pre-eruptive behavior, it may lead to more effective hazard reduction strategies, enhancing public safety around active volcanoes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multitimescale Template Matching: Discovering Eruption Precursors across Diverse Volcanic Settings\",\"authors\":\"A. Ardid, D. Dempsey, Josh Corry, Owen Garrett, Oliver D. Lamb, S. Cronin\",\"doi\":\"10.1785/0220240012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Volcanic eruptions pose significant risks, demanding precise monitoring for timely hazard mitigation. However, interpreting noisy seismic data for eruptive precursors remains challenging. This study introduces a novel methodology that extends an earlier time-series feature engineering approach to include template matching against prior eruptions. We aim to identify subtle signals within seismic data to enhance our understanding of volcanic activity and future hazards. To do this, we analyze the continuous seismic record at a volcano and identify the time-series elements that regularly precede eruptions and the timescales over which these are observable. We conduct tests across various time lengths, ranging from 1 to 60 days. For Copahue (Chile/Argentina), Pavlof (Alaska), Bezymianny (Russia), and Whakaari (New Zealand) volcanoes, we confirm statistically significant eruption precursors. In particular, a feature named change quantiles (0.2–0.8), which is related to the conditional dynamics of surface acceleration at the volcano, emerges as a key indicator of future eruptions over 14-day timescales. This research offers new methods for real-time seismovolcanic monitoring, minimizing the effects of unknown, spurious noise, and discerning recurrent patterns through template matching. By providing deeper insights into pre-eruptive behavior, it may lead to more effective hazard reduction strategies, enhancing public safety around active volcanoes.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0220240012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0220240012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

火山爆发带来巨大风险,需要精确监测以及时减轻危害。然而,解释高噪声地震数据以寻找火山爆发前兆仍是一项挑战。本研究介绍了一种新方法,它扩展了早期的时间序列特征工程方法,将模板匹配与之前的火山爆发相联系。我们的目标是识别地震数据中的微妙信号,以增强我们对火山活动和未来危害的了解。为此,我们分析了火山的连续地震记录,并确定了火山爆发前经常出现的时间序列要素以及可观测到这些要素的时间尺度。我们对从 1 天到 60 天的不同时间长度进行了测试。对于科帕休火山(智利/阿根廷)、帕夫洛夫火山(阿拉斯加)、贝兹米安尼火山(俄罗斯)和瓦卡里火山(新西兰),我们确认了统计意义上的喷发前兆。特别是一个名为变化量级(0.2-0.8)的特征,它与火山表面加速度的条件动态有关,是未来 14 天时间尺度上火山爆发的关键指标。这项研究为实时地震火山监测提供了新的方法,最大限度地减少了未知杂散噪声的影响,并通过模板匹配辨别了重复出现的模式。通过更深入地了解火山爆发前的行为,可以制定更有效的减灾战略,加强活火山周围的公共安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multitimescale Template Matching: Discovering Eruption Precursors across Diverse Volcanic Settings
Volcanic eruptions pose significant risks, demanding precise monitoring for timely hazard mitigation. However, interpreting noisy seismic data for eruptive precursors remains challenging. This study introduces a novel methodology that extends an earlier time-series feature engineering approach to include template matching against prior eruptions. We aim to identify subtle signals within seismic data to enhance our understanding of volcanic activity and future hazards. To do this, we analyze the continuous seismic record at a volcano and identify the time-series elements that regularly precede eruptions and the timescales over which these are observable. We conduct tests across various time lengths, ranging from 1 to 60 days. For Copahue (Chile/Argentina), Pavlof (Alaska), Bezymianny (Russia), and Whakaari (New Zealand) volcanoes, we confirm statistically significant eruption precursors. In particular, a feature named change quantiles (0.2–0.8), which is related to the conditional dynamics of surface acceleration at the volcano, emerges as a key indicator of future eruptions over 14-day timescales. This research offers new methods for real-time seismovolcanic monitoring, minimizing the effects of unknown, spurious noise, and discerning recurrent patterns through template matching. By providing deeper insights into pre-eruptive behavior, it may lead to more effective hazard reduction strategies, enhancing public safety around active volcanoes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信