{"title":"基于输入输出有限时间稳定性的不确定扰动下的电力系统频率控制","authors":"Lixuan Zhu, Yiping Yu, Ping Ju","doi":"10.1049/gtd2.13180","DOIUrl":null,"url":null,"abstract":"<p>In modern power systems, the uncertainty and volatility of generation and loads greatly increase the balance discrepancy between the power supply and demand, creating major potential security hazards. To limit out-of-bound frequencies, an effective frequency control method for power systems with interval uncertain disturbances is proposed. Based on the state space model of the system frequency response with delays, linear matrix inequalities are constructed based on the input‒output finite-time stability of the system frequency. By searching for the output feedback gain and altering the time delay with the Padé approximation, the feasibility of the linear matrix inequalities is improved, and a frequency controller is designed. The simulation results show that the proposed method can effectively control frequency deviations. When the closed-loop system is disturbed by uncertain power fluctuations, its frequency will always remain within the allowable range to ensure the secure operation of the power system.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 12","pages":"2184-2192"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13180","citationCount":"0","resultStr":"{\"title\":\"Frequency control of power systems under uncertain disturbances based on input-output finite-time stability\",\"authors\":\"Lixuan Zhu, Yiping Yu, Ping Ju\",\"doi\":\"10.1049/gtd2.13180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In modern power systems, the uncertainty and volatility of generation and loads greatly increase the balance discrepancy between the power supply and demand, creating major potential security hazards. To limit out-of-bound frequencies, an effective frequency control method for power systems with interval uncertain disturbances is proposed. Based on the state space model of the system frequency response with delays, linear matrix inequalities are constructed based on the input‒output finite-time stability of the system frequency. By searching for the output feedback gain and altering the time delay with the Padé approximation, the feasibility of the linear matrix inequalities is improved, and a frequency controller is designed. The simulation results show that the proposed method can effectively control frequency deviations. When the closed-loop system is disturbed by uncertain power fluctuations, its frequency will always remain within the allowable range to ensure the secure operation of the power system.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"18 12\",\"pages\":\"2184-2192\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13180\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13180\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13180","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Frequency control of power systems under uncertain disturbances based on input-output finite-time stability
In modern power systems, the uncertainty and volatility of generation and loads greatly increase the balance discrepancy between the power supply and demand, creating major potential security hazards. To limit out-of-bound frequencies, an effective frequency control method for power systems with interval uncertain disturbances is proposed. Based on the state space model of the system frequency response with delays, linear matrix inequalities are constructed based on the input‒output finite-time stability of the system frequency. By searching for the output feedback gain and altering the time delay with the Padé approximation, the feasibility of the linear matrix inequalities is improved, and a frequency controller is designed. The simulation results show that the proposed method can effectively control frequency deviations. When the closed-loop system is disturbed by uncertain power fluctuations, its frequency will always remain within the allowable range to ensure the secure operation of the power system.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf