{"title":"涉及位移、应力和/或压力的有限应变超弹性中稳定混合模型的有限元近似--替代方案概览","authors":"Ramon Codina, Inocencio Castañar, Joan Baiges","doi":"10.1002/nme.7540","DOIUrl":null,"url":null,"abstract":"<p>This paper presents mixed finite element formulations to approximate the hyperelasticity problem using as unknowns the displacements and either stresses or pressure or both. These mixed formulations require either finite element spaces for the unknowns that satisfy the proper inf-sup conditions to guarantee stability or to employ stabilized finite element formulations that provide freedom for the choice of the interpolating spaces. The latter approach is followed in this work, using the Variational Multiscale concept to derive these formulations. Regarding the tackling of the geometry, we consider both infinitesimal and finite strain problems, considering for the latter both an updated Lagrangian and a total Lagrangian description of the governing equations. The combination of the different geometrical descriptions and the mixed formulations employed provides a good number of alternatives that are all reviewed in this paper.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7540","citationCount":"0","resultStr":"{\"title\":\"Finite element approximation of stabilized mixed models in finite strain hyperelasticity involving displacements and stresses and/or pressure—An overview of alternatives\",\"authors\":\"Ramon Codina, Inocencio Castañar, Joan Baiges\",\"doi\":\"10.1002/nme.7540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents mixed finite element formulations to approximate the hyperelasticity problem using as unknowns the displacements and either stresses or pressure or both. These mixed formulations require either finite element spaces for the unknowns that satisfy the proper inf-sup conditions to guarantee stability or to employ stabilized finite element formulations that provide freedom for the choice of the interpolating spaces. The latter approach is followed in this work, using the Variational Multiscale concept to derive these formulations. Regarding the tackling of the geometry, we consider both infinitesimal and finite strain problems, considering for the latter both an updated Lagrangian and a total Lagrangian description of the governing equations. The combination of the different geometrical descriptions and the mixed formulations employed provides a good number of alternatives that are all reviewed in this paper.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7540\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7540\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7540","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Finite element approximation of stabilized mixed models in finite strain hyperelasticity involving displacements and stresses and/or pressure—An overview of alternatives
This paper presents mixed finite element formulations to approximate the hyperelasticity problem using as unknowns the displacements and either stresses or pressure or both. These mixed formulations require either finite element spaces for the unknowns that satisfy the proper inf-sup conditions to guarantee stability or to employ stabilized finite element formulations that provide freedom for the choice of the interpolating spaces. The latter approach is followed in this work, using the Variational Multiscale concept to derive these formulations. Regarding the tackling of the geometry, we consider both infinitesimal and finite strain problems, considering for the latter both an updated Lagrangian and a total Lagrangian description of the governing equations. The combination of the different geometrical descriptions and the mixed formulations employed provides a good number of alternatives that are all reviewed in this paper.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.