F. Grussie, Lukas Berger, Manfred Grieser, Á. Kálosi, D. Müll, Oldřich Novotný, Aigars Znotins, Fabrice Dayou, Xavier Urbain, Holger Kreckel
{"title":"振动冷 HD+ 和 <mml:msubs 反应的绝对速率系数测量值","authors":"F. Grussie, Lukas Berger, Manfred Grieser, Á. Kálosi, D. Müll, Oldřich Novotný, Aigars Znotins, Fabrice Dayou, Xavier Urbain, Holger Kreckel","doi":"10.1103/physreva.109.062804","DOIUrl":null,"url":null,"abstract":"Ion-neutral reactions are driving the formation of small molecules in the gas phase of interstellar clouds, where hydrogen molecules and their ions are by far the most important collision partners for any species in the astrochemical network. Here we present absolute rate coefficient measurements for the reactions HD++C→CH+/CD++D/H and H3++C→CH+/CH2++H2/H obtained using a recently commissioned ion-neutral collision setup at the Cryogenic Storage Ring. Our measurements with vibrationally cold ions result in significantly higher rate coefficients when compared with previous studies using internally excited ions, bringing them in better agreement with classical capture theories. Moreover, we have performed detailed quasiclassical trajectory (QCT) calculations for the HD++C reaction, using new potential energy surfaces. Our experimental results and the QCT calculations show very good agreement for the absolute cross section of the reactions, as well as for the isotope effect. These results have great potential relevance for the chemistry of the interstellar medium and the onset of organic chemistry in space.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":48702,"journal":{"name":"Physical Review a","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Absolute rate coefficient measurements of the reactions of vibrationally cold \\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msup><mml:mrow><mml:mi>HD</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:math>\\n and \\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msubs\",\"authors\":\"F. Grussie, Lukas Berger, Manfred Grieser, Á. Kálosi, D. Müll, Oldřich Novotný, Aigars Znotins, Fabrice Dayou, Xavier Urbain, Holger Kreckel\",\"doi\":\"10.1103/physreva.109.062804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion-neutral reactions are driving the formation of small molecules in the gas phase of interstellar clouds, where hydrogen molecules and their ions are by far the most important collision partners for any species in the astrochemical network. Here we present absolute rate coefficient measurements for the reactions HD++C→CH+/CD++D/H and H3++C→CH+/CH2++H2/H obtained using a recently commissioned ion-neutral collision setup at the Cryogenic Storage Ring. Our measurements with vibrationally cold ions result in significantly higher rate coefficients when compared with previous studies using internally excited ions, bringing them in better agreement with classical capture theories. Moreover, we have performed detailed quasiclassical trajectory (QCT) calculations for the HD++C reaction, using new potential energy surfaces. Our experimental results and the QCT calculations show very good agreement for the absolute cross section of the reactions, as well as for the isotope effect. These results have great potential relevance for the chemistry of the interstellar medium and the onset of organic chemistry in space.\\n \\n \\n \\n \\n Published by the American Physical Society\\n 2024\\n \\n \\n\",\"PeriodicalId\":48702,\"journal\":{\"name\":\"Physical Review a\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review a\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.109.062804\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.109.062804","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Absolute rate coefficient measurements of the reactions of vibrationally cold
HD+
and
Ion-neutral reactions are driving the formation of small molecules in the gas phase of interstellar clouds, where hydrogen molecules and their ions are by far the most important collision partners for any species in the astrochemical network. Here we present absolute rate coefficient measurements for the reactions HD++C→CH+/CD++D/H and H3++C→CH+/CH2++H2/H obtained using a recently commissioned ion-neutral collision setup at the Cryogenic Storage Ring. Our measurements with vibrationally cold ions result in significantly higher rate coefficients when compared with previous studies using internally excited ions, bringing them in better agreement with classical capture theories. Moreover, we have performed detailed quasiclassical trajectory (QCT) calculations for the HD++C reaction, using new potential energy surfaces. Our experimental results and the QCT calculations show very good agreement for the absolute cross section of the reactions, as well as for the isotope effect. These results have great potential relevance for the chemistry of the interstellar medium and the onset of organic chemistry in space.
Published by the American Physical Society
2024
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics