Ammar Falah ALgamluoli, Xiaohua Wu, Hayder K. Jahanger
{"title":"优化的超高电压增益 DC-DC 转换器,可降低光伏应用中的电流应力","authors":"Ammar Falah ALgamluoli, Xiaohua Wu, Hayder K. Jahanger","doi":"10.1049/pel2.12726","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a non-isolated DC-DC converter designed to validate ultra-high voltage gain using a modified double boost mode. The objective is to achieve exceptionally high voltage gain by integrating a modified triple boost technique (MTBT), interleaved with second main and auxiliary third MOSFETs, and a modified switched inductor-capacitor (MSLC), effectively doubling the voltage transfer gain. Furthermore, MSLC is combined with the auxiliary third and double main MOSFET to double the voltage gain while concurrently mitigating voltage stress on the auxiliary MOSFET and diodes in the proposed converter (the PC). Additionally, all diodes in the MTBT operate under zero current switching (ZCS) and the double main and auxiliary third MOSFET face very low current stress at ultra-high voltage gain. The input current of the PC remains steady without pulsating at a low duty ratio, making the PC more suitable for renewable energy systems. The PC offers numerous advantages, exhibiting high efficiency and ensuring minimal voltage stress on power devices with low current stress on the power switches. Notably, PC aims to elevate input voltages from 30 V to a variable output range of 335 to 600 V, delivering 440 watts at 96.1% efficiency.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12726","citationCount":"0","resultStr":"{\"title\":\"Optimized ultra high voltage gain DC–DC converter with current stress reduction for photovoltaic application\",\"authors\":\"Ammar Falah ALgamluoli, Xiaohua Wu, Hayder K. Jahanger\",\"doi\":\"10.1049/pel2.12726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a non-isolated DC-DC converter designed to validate ultra-high voltage gain using a modified double boost mode. The objective is to achieve exceptionally high voltage gain by integrating a modified triple boost technique (MTBT), interleaved with second main and auxiliary third MOSFETs, and a modified switched inductor-capacitor (MSLC), effectively doubling the voltage transfer gain. Furthermore, MSLC is combined with the auxiliary third and double main MOSFET to double the voltage gain while concurrently mitigating voltage stress on the auxiliary MOSFET and diodes in the proposed converter (the PC). Additionally, all diodes in the MTBT operate under zero current switching (ZCS) and the double main and auxiliary third MOSFET face very low current stress at ultra-high voltage gain. The input current of the PC remains steady without pulsating at a low duty ratio, making the PC more suitable for renewable energy systems. The PC offers numerous advantages, exhibiting high efficiency and ensuring minimal voltage stress on power devices with low current stress on the power switches. Notably, PC aims to elevate input voltages from 30 V to a variable output range of 335 to 600 V, delivering 440 watts at 96.1% efficiency.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12726\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12726\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12726","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimized ultra high voltage gain DC–DC converter with current stress reduction for photovoltaic application
This paper presents a non-isolated DC-DC converter designed to validate ultra-high voltage gain using a modified double boost mode. The objective is to achieve exceptionally high voltage gain by integrating a modified triple boost technique (MTBT), interleaved with second main and auxiliary third MOSFETs, and a modified switched inductor-capacitor (MSLC), effectively doubling the voltage transfer gain. Furthermore, MSLC is combined with the auxiliary third and double main MOSFET to double the voltage gain while concurrently mitigating voltage stress on the auxiliary MOSFET and diodes in the proposed converter (the PC). Additionally, all diodes in the MTBT operate under zero current switching (ZCS) and the double main and auxiliary third MOSFET face very low current stress at ultra-high voltage gain. The input current of the PC remains steady without pulsating at a low duty ratio, making the PC more suitable for renewable energy systems. The PC offers numerous advantages, exhibiting high efficiency and ensuring minimal voltage stress on power devices with low current stress on the power switches. Notably, PC aims to elevate input voltages from 30 V to a variable output range of 335 to 600 V, delivering 440 watts at 96.1% efficiency.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.