测量对量子速度极限的影响

Abhay Srivastav, Vivek Pandey, A. Pati
{"title":"测量对量子速度极限的影响","authors":"Abhay Srivastav, Vivek Pandey, A. Pati","doi":"10.1209/0295-5075/ad56c2","DOIUrl":null,"url":null,"abstract":"\n Given the initial and final states of a quantum system, the speed of transportation of state vector in the projective Hilbert space governs the quantum speed limit. Here, we ask the question what happens to the quantum speed limit under continuous measurement process. We model the continuous measurement process by a non-Hermitian Hamiltonian which keeps the evolution of the system Schr{\"o}dinger-like even under the process of measurement. Using this specific measurement model, we prove that under continuous measurement, the speed of transportation of a quantum system tends to zero. Interestingly, we also find that for small time scale, there is an enhancement of quantum speed even if the measurement strength is finite. Our findings can have applications in quantum computing and quantum control where dynamics is governed by both unitary and measurement processes.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"63 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of measurements on quantum speed limit\",\"authors\":\"Abhay Srivastav, Vivek Pandey, A. Pati\",\"doi\":\"10.1209/0295-5075/ad56c2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Given the initial and final states of a quantum system, the speed of transportation of state vector in the projective Hilbert space governs the quantum speed limit. Here, we ask the question what happens to the quantum speed limit under continuous measurement process. We model the continuous measurement process by a non-Hermitian Hamiltonian which keeps the evolution of the system Schr{\\\"o}dinger-like even under the process of measurement. Using this specific measurement model, we prove that under continuous measurement, the speed of transportation of a quantum system tends to zero. Interestingly, we also find that for small time scale, there is an enhancement of quantum speed even if the measurement strength is finite. Our findings can have applications in quantum computing and quantum control where dynamics is governed by both unitary and measurement processes.\",\"PeriodicalId\":503117,\"journal\":{\"name\":\"Europhysics Letters\",\"volume\":\"63 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Europhysics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad56c2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad56c2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定量子系统的初始和最终状态,状态矢量在投影希尔伯特空间中的传输速度决定了量子速度极限。在这里,我们要问的问题是,在连续测量过程中,量子速度极限会发生什么变化。我们用一个非赫米态哈密顿来模拟连续测量过程,即使在测量过程中也能保持系统的类薛定谔演化。利用这个特定的测量模型,我们证明了在连续测量下,量子系统的传输速度趋于零。有趣的是,我们还发现,对于小时间尺度,即使测量强度是有限的,量子速度也会增强。我们的发现可以应用于量子计算和量子控制领域,在这些领域中,动力学同时受单元过程和测量过程的支配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of measurements on quantum speed limit
Given the initial and final states of a quantum system, the speed of transportation of state vector in the projective Hilbert space governs the quantum speed limit. Here, we ask the question what happens to the quantum speed limit under continuous measurement process. We model the continuous measurement process by a non-Hermitian Hamiltonian which keeps the evolution of the system Schr{"o}dinger-like even under the process of measurement. Using this specific measurement model, we prove that under continuous measurement, the speed of transportation of a quantum system tends to zero. Interestingly, we also find that for small time scale, there is an enhancement of quantum speed even if the measurement strength is finite. Our findings can have applications in quantum computing and quantum control where dynamics is governed by both unitary and measurement processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信