石墨基纳米管的结构和电子特性综述

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Roya Majidi
{"title":"石墨基纳米管的结构和电子特性综述","authors":"Roya Majidi","doi":"10.1007/s10825-024-02181-6","DOIUrl":null,"url":null,"abstract":"<div><p>Graphyne-based nanotubes are cylindrical structures made up of a single layer of graphyne that has been rolled into a tube. These one-dimensional structures are constructed from carbon atoms with both sp and sp<sup>2</sup> hybridization. The common graphene-based carbon nanotubes, and graphyne-based nanotubes including α-, β-, γ-, α2-, 6,6,12-, and δ-graphyne nanotubes are introduced. The atomic structures and electronic characteristics of these tubes are reviewed. The electronic band structures and density of states calculated by density functional theory are presented. The nanotubes with different types and chiralities display either metallic or semiconducting characteristics. The variety of structures and electronic properties of these nanotubes make them extremely hopeful for applications, especially in nanoelectronic devices such as field emission transistors, sensors, nanoelectromechanical systems, super capacitors, energy and data storage devices.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 4","pages":"759 - 781"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of structural and electronic properties of graphyne-based nanotubes\",\"authors\":\"Roya Majidi\",\"doi\":\"10.1007/s10825-024-02181-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphyne-based nanotubes are cylindrical structures made up of a single layer of graphyne that has been rolled into a tube. These one-dimensional structures are constructed from carbon atoms with both sp and sp<sup>2</sup> hybridization. The common graphene-based carbon nanotubes, and graphyne-based nanotubes including α-, β-, γ-, α2-, 6,6,12-, and δ-graphyne nanotubes are introduced. The atomic structures and electronic characteristics of these tubes are reviewed. The electronic band structures and density of states calculated by density functional theory are presented. The nanotubes with different types and chiralities display either metallic or semiconducting characteristics. The variety of structures and electronic properties of these nanotubes make them extremely hopeful for applications, especially in nanoelectronic devices such as field emission transistors, sensors, nanoelectromechanical systems, super capacitors, energy and data storage devices.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 4\",\"pages\":\"759 - 781\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02181-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02181-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于石墨烯的纳米管是由单层石墨烯卷成的圆柱形结构。这些一维结构由 sp 和 sp2 杂化的碳原子构成。本文介绍了常见的石墨烯基碳纳米管和石墨基纳米管,包括α-、β-、γ-、α2-、6,6,12-和δ-石墨烯纳米管。回顾了这些管子的原子结构和电子特性。介绍了用密度泛函理论计算的电子带结构和态密度。不同类型和手性的纳米管显示出金属或半导体特性。这些纳米管的各种结构和电子特性使其极具应用前景,尤其是在纳米电子器件方面,如场发射晶体管、传感器、纳米机电系统、超级电容器、能量和数据存储设备等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A review of structural and electronic properties of graphyne-based nanotubes

A review of structural and electronic properties of graphyne-based nanotubes

A review of structural and electronic properties of graphyne-based nanotubes

Graphyne-based nanotubes are cylindrical structures made up of a single layer of graphyne that has been rolled into a tube. These one-dimensional structures are constructed from carbon atoms with both sp and sp2 hybridization. The common graphene-based carbon nanotubes, and graphyne-based nanotubes including α-, β-, γ-, α2-, 6,6,12-, and δ-graphyne nanotubes are introduced. The atomic structures and electronic characteristics of these tubes are reviewed. The electronic band structures and density of states calculated by density functional theory are presented. The nanotubes with different types and chiralities display either metallic or semiconducting characteristics. The variety of structures and electronic properties of these nanotubes make them extremely hopeful for applications, especially in nanoelectronic devices such as field emission transistors, sensors, nanoelectromechanical systems, super capacitors, energy and data storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信