{"title":"煤气化粗炉渣作为高效磷酸盐吸附剂的等温线、动力学和吸附机理研究","authors":"Xuzhi Shi, Baoguo Yang, Dayi Qian, Dong Cui, Hongbin Li, Chao Wang, Yuhao Zhu, Tao Yu","doi":"10.3390/separations11060182","DOIUrl":null,"url":null,"abstract":"This study investigates the efficacy of a novel low-cost phosphate adsorbent, denoted as SH-CGCS, derived from coal gasification coarse slag (CGCS) via an alkali activation method. SH-CGCS is a mesoporous material with a specific surface area (64 m2/g) approximately six times larger than CGCS (11 m2/g), which enhances its adsorption capacity compared with CGCS. Furthermore, SH-CGCS achieves a phosphate adsorption capacity of 38.5 mg/g in strongly acidic water (pH 3) and demonstrates robust acid resistance, which makes it particularly effective for phosphate removal from acidic wastewater. Results from coexisting anion experiments affirm the good adsorption selectivity of SH-CGCS for phosphate. Moreover, SH-CGCS exhibits proficiency in treating water containing low phosphate concentrations under flowing conditions. The maximum phosphate adsorption capacity of SH-CGCS calculated using the Langmuir model is 23.92 mg/g, surpassing that of other reported adsorbents. Importantly, saturated SH-CGCS can be regenerated and reused, which contributes to its practical applicability. The adsorption mechanisms of SH-CGCS for phosphate involve ligand exchange, inner-sphere complexation, surface precipitation, and electrostatic adsorption. Thus, this study not only enhances the overall utility of CGCS but also presents a simple and efficient method for removing phosphate. Our findings indicate that SH-CGCS holds considerable potential as a phosphate adsorbent, offering a promising solution for wastewater treatment.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotherm, Kinetics, and Adsorption Mechanism Studies of Coal Gasification Coarse Slag as Highly Efficient Phosphate Adsorbents\",\"authors\":\"Xuzhi Shi, Baoguo Yang, Dayi Qian, Dong Cui, Hongbin Li, Chao Wang, Yuhao Zhu, Tao Yu\",\"doi\":\"10.3390/separations11060182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the efficacy of a novel low-cost phosphate adsorbent, denoted as SH-CGCS, derived from coal gasification coarse slag (CGCS) via an alkali activation method. SH-CGCS is a mesoporous material with a specific surface area (64 m2/g) approximately six times larger than CGCS (11 m2/g), which enhances its adsorption capacity compared with CGCS. Furthermore, SH-CGCS achieves a phosphate adsorption capacity of 38.5 mg/g in strongly acidic water (pH 3) and demonstrates robust acid resistance, which makes it particularly effective for phosphate removal from acidic wastewater. Results from coexisting anion experiments affirm the good adsorption selectivity of SH-CGCS for phosphate. Moreover, SH-CGCS exhibits proficiency in treating water containing low phosphate concentrations under flowing conditions. The maximum phosphate adsorption capacity of SH-CGCS calculated using the Langmuir model is 23.92 mg/g, surpassing that of other reported adsorbents. Importantly, saturated SH-CGCS can be regenerated and reused, which contributes to its practical applicability. The adsorption mechanisms of SH-CGCS for phosphate involve ligand exchange, inner-sphere complexation, surface precipitation, and electrostatic adsorption. Thus, this study not only enhances the overall utility of CGCS but also presents a simple and efficient method for removing phosphate. Our findings indicate that SH-CGCS holds considerable potential as a phosphate adsorbent, offering a promising solution for wastewater treatment.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/separations11060182\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11060182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Isotherm, Kinetics, and Adsorption Mechanism Studies of Coal Gasification Coarse Slag as Highly Efficient Phosphate Adsorbents
This study investigates the efficacy of a novel low-cost phosphate adsorbent, denoted as SH-CGCS, derived from coal gasification coarse slag (CGCS) via an alkali activation method. SH-CGCS is a mesoporous material with a specific surface area (64 m2/g) approximately six times larger than CGCS (11 m2/g), which enhances its adsorption capacity compared with CGCS. Furthermore, SH-CGCS achieves a phosphate adsorption capacity of 38.5 mg/g in strongly acidic water (pH 3) and demonstrates robust acid resistance, which makes it particularly effective for phosphate removal from acidic wastewater. Results from coexisting anion experiments affirm the good adsorption selectivity of SH-CGCS for phosphate. Moreover, SH-CGCS exhibits proficiency in treating water containing low phosphate concentrations under flowing conditions. The maximum phosphate adsorption capacity of SH-CGCS calculated using the Langmuir model is 23.92 mg/g, surpassing that of other reported adsorbents. Importantly, saturated SH-CGCS can be regenerated and reused, which contributes to its practical applicability. The adsorption mechanisms of SH-CGCS for phosphate involve ligand exchange, inner-sphere complexation, surface precipitation, and electrostatic adsorption. Thus, this study not only enhances the overall utility of CGCS but also presents a simple and efficient method for removing phosphate. Our findings indicate that SH-CGCS holds considerable potential as a phosphate adsorbent, offering a promising solution for wastewater treatment.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization