Fei Li, Qiang Mao, Juan Chen, Yan Huang, Jianping Huang
{"title":"基于修正分数拉普拉斯纯声波方程的 TTI 介质中稳定的 Q 补偿反向时间迁移","authors":"Fei Li, Qiang Mao, Juan Chen, Yan Huang, Jianping Huang","doi":"10.1093/jge/gxae066","DOIUrl":null,"url":null,"abstract":"\n The anisotropy and attenuation properties of real earth media can lead to amplitude reduction and phase dispersion as seismic waves propagate through it. Ignoring these effects will degrade the resolution of seismic imaging profiles, thereby affecting the accuracy of geological interpretation. To characterize the impacts of viscosity and anisotropy, we formulate a modified pure-viscoacoustic (PU-V) wave equation including the decoupled fractional Laplacian (DFL) for tilted transversely isotropic (TTI) media, which enables the generation of stable wavefields that are resilient to noise interference. Numerical tests show that the newly derived PU-V wave equation is capable of accurately simulating the viscoacoustic wavefields in anisotropic media with strong attenuation. Building on our TTI PU-V wave equation, we implement stable reverse time migration technique with attenuation compensation (Q-TTI RTM), effectively migrating the impacts of anisotropy and compensates for attenuation. In the Q-TTI RTM workflow, to remove the unstable high-frequency components in attenuation compensated wavefields, we construct a stable attenuation compensated wavefield modeling (ACWM) operator. The proposed stable ACWM operator consists of velocity anisotropic and attenuation anisotropic parameters, effectively suppressing the high-frequency artifacts in the attenuation compensated wavefield. Synthetic examples demonstrate that our stable Q-TTI RTM technique can simultaneously and accurately correct for the influences of anisotropy and attenuation, resulting in the high-quality imaging results.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Q-compensated reverse time migration in TTI media based on a modified fractional Laplacian pure-viscoacoustic wave equation\",\"authors\":\"Fei Li, Qiang Mao, Juan Chen, Yan Huang, Jianping Huang\",\"doi\":\"10.1093/jge/gxae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The anisotropy and attenuation properties of real earth media can lead to amplitude reduction and phase dispersion as seismic waves propagate through it. Ignoring these effects will degrade the resolution of seismic imaging profiles, thereby affecting the accuracy of geological interpretation. To characterize the impacts of viscosity and anisotropy, we formulate a modified pure-viscoacoustic (PU-V) wave equation including the decoupled fractional Laplacian (DFL) for tilted transversely isotropic (TTI) media, which enables the generation of stable wavefields that are resilient to noise interference. Numerical tests show that the newly derived PU-V wave equation is capable of accurately simulating the viscoacoustic wavefields in anisotropic media with strong attenuation. Building on our TTI PU-V wave equation, we implement stable reverse time migration technique with attenuation compensation (Q-TTI RTM), effectively migrating the impacts of anisotropy and compensates for attenuation. In the Q-TTI RTM workflow, to remove the unstable high-frequency components in attenuation compensated wavefields, we construct a stable attenuation compensated wavefield modeling (ACWM) operator. The proposed stable ACWM operator consists of velocity anisotropic and attenuation anisotropic parameters, effectively suppressing the high-frequency artifacts in the attenuation compensated wavefield. Synthetic examples demonstrate that our stable Q-TTI RTM technique can simultaneously and accurately correct for the influences of anisotropy and attenuation, resulting in the high-quality imaging results.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae066\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae066","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Stable Q-compensated reverse time migration in TTI media based on a modified fractional Laplacian pure-viscoacoustic wave equation
The anisotropy and attenuation properties of real earth media can lead to amplitude reduction and phase dispersion as seismic waves propagate through it. Ignoring these effects will degrade the resolution of seismic imaging profiles, thereby affecting the accuracy of geological interpretation. To characterize the impacts of viscosity and anisotropy, we formulate a modified pure-viscoacoustic (PU-V) wave equation including the decoupled fractional Laplacian (DFL) for tilted transversely isotropic (TTI) media, which enables the generation of stable wavefields that are resilient to noise interference. Numerical tests show that the newly derived PU-V wave equation is capable of accurately simulating the viscoacoustic wavefields in anisotropic media with strong attenuation. Building on our TTI PU-V wave equation, we implement stable reverse time migration technique with attenuation compensation (Q-TTI RTM), effectively migrating the impacts of anisotropy and compensates for attenuation. In the Q-TTI RTM workflow, to remove the unstable high-frequency components in attenuation compensated wavefields, we construct a stable attenuation compensated wavefield modeling (ACWM) operator. The proposed stable ACWM operator consists of velocity anisotropic and attenuation anisotropic parameters, effectively suppressing the high-frequency artifacts in the attenuation compensated wavefield. Synthetic examples demonstrate that our stable Q-TTI RTM technique can simultaneously and accurately correct for the influences of anisotropy and attenuation, resulting in the high-quality imaging results.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.