{"title":"基于深度学习算子的一维波方程求解数值方案方法","authors":"Yunfan Chang, Dinghui Yang, Xijun He","doi":"10.1093/jge/gxae062","DOIUrl":null,"url":null,"abstract":"\n In this paper, we introduce the deep numerical technique DeepNM, which is designed for solving one-dimensional (1D) hyperbolic conservation laws, particularly wave equations. By creatively integrating traditional numerical schemes with deep learning techniques, the method yields improvements over conventional approaches. Specifically, we compare this approach against two established classical numerical methods: the Discontinuous Galerkin method (DG) and the Lax-Wendroff correction method (LWC). While maintaining a comparable level of accuracy, DeepNM significantly improves computational speed, surpassing conventional numerical methods in this aspect by more than tenfold, and reducing storage requirements by over 1000 times. Furthermore, DeepNM facilitates the utilization of higher-order numerical schemes and allows for an increased number of grid points, thereby enhancing precision. In contrast to the more prevalent PINN method, DeepNM optimally combines the strengths of conventional mathematical techniques with deep learning, resulting in heightened accuracy and expedited computations for solving partial differential equations (PDEs). Notably, DeepNM introduces a novel research paradigm for numerical equation-solving that can be seamlessly integrated with various traditional numerical methods.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning operator-based numerical scheme method for solving 1-D wave equations\",\"authors\":\"Yunfan Chang, Dinghui Yang, Xijun He\",\"doi\":\"10.1093/jge/gxae062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we introduce the deep numerical technique DeepNM, which is designed for solving one-dimensional (1D) hyperbolic conservation laws, particularly wave equations. By creatively integrating traditional numerical schemes with deep learning techniques, the method yields improvements over conventional approaches. Specifically, we compare this approach against two established classical numerical methods: the Discontinuous Galerkin method (DG) and the Lax-Wendroff correction method (LWC). While maintaining a comparable level of accuracy, DeepNM significantly improves computational speed, surpassing conventional numerical methods in this aspect by more than tenfold, and reducing storage requirements by over 1000 times. Furthermore, DeepNM facilitates the utilization of higher-order numerical schemes and allows for an increased number of grid points, thereby enhancing precision. In contrast to the more prevalent PINN method, DeepNM optimally combines the strengths of conventional mathematical techniques with deep learning, resulting in heightened accuracy and expedited computations for solving partial differential equations (PDEs). Notably, DeepNM introduces a novel research paradigm for numerical equation-solving that can be seamlessly integrated with various traditional numerical methods.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae062\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae062","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A deep learning operator-based numerical scheme method for solving 1-D wave equations
In this paper, we introduce the deep numerical technique DeepNM, which is designed for solving one-dimensional (1D) hyperbolic conservation laws, particularly wave equations. By creatively integrating traditional numerical schemes with deep learning techniques, the method yields improvements over conventional approaches. Specifically, we compare this approach against two established classical numerical methods: the Discontinuous Galerkin method (DG) and the Lax-Wendroff correction method (LWC). While maintaining a comparable level of accuracy, DeepNM significantly improves computational speed, surpassing conventional numerical methods in this aspect by more than tenfold, and reducing storage requirements by over 1000 times. Furthermore, DeepNM facilitates the utilization of higher-order numerical schemes and allows for an increased number of grid points, thereby enhancing precision. In contrast to the more prevalent PINN method, DeepNM optimally combines the strengths of conventional mathematical techniques with deep learning, resulting in heightened accuracy and expedited computations for solving partial differential equations (PDEs). Notably, DeepNM introduces a novel research paradigm for numerical equation-solving that can be seamlessly integrated with various traditional numerical methods.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.