D. Turney, Debayon Dutta, Sanjoy Banerjee, Timothy N. Lambert, Nelson S. Bell
{"title":"商业相关条件下盐包水 K-Acetate 电解质锌离子电池的电化学和循环分析","authors":"D. Turney, Debayon Dutta, Sanjoy Banerjee, Timothy N. Lambert, Nelson S. Bell","doi":"10.1149/1945-7111/ad5769","DOIUrl":null,"url":null,"abstract":"\n Water-in-salt electrolyte (WiSE) promises high-voltage battery technology with low fire risk. Here we assess potassium acetate (KAc) WiSE for Zn ion batteries under commercially relevant conditions. Rotating disc electrode analysis of WiSE degradation and Zn plating/deplating suggest a solid electrolyte interphase (SEI) layer dominates. Butler-Volmer kinetics and Koutecky-Levich mass-transfer are of secondary importance. Measurements of chemical potential reveal that bulk solvation of H2O (in KAc or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) WiSE) is insignificant compared to SEI blocking. Zinc cycling in KAc WiSE with practical rates (~0.3 to 8.0 mA/cm2) and areal capacities (>20 mAh/cm2) shows dendrites are less prominent than in KOH, but the SEI layer suppresses the electrochemical reaction too much for commercial feasibility. Dilution or convection of the WiSE alleviates the SEI blocking effects. Cu substrate shows good Zn adhesion, but Ti, Sn, and Ni show poor adhesion. Cathodes made with chevrel (Mo6S8) reversibly intercalate Zn2+ to form a novel battery technology, but yield <1.0 V cell voltage. Cathodes made with zinc-containing Prussian blue analogues (ZnHCF or ZnMnHCF) yield a voltage near 2.0 V but appear incompatible with cycling in the present KAc WiSE formulation. Future research directions for KAc WiSE are proposed to focus on SEI dynamics and Prussian blue compatibility","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical and Cycle Analysis of Water-in-Salt K-Acetate Electrolyte Zn-Ion Batteries Under Commercially-Relevant Conditions\",\"authors\":\"D. Turney, Debayon Dutta, Sanjoy Banerjee, Timothy N. Lambert, Nelson S. Bell\",\"doi\":\"10.1149/1945-7111/ad5769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Water-in-salt electrolyte (WiSE) promises high-voltage battery technology with low fire risk. Here we assess potassium acetate (KAc) WiSE for Zn ion batteries under commercially relevant conditions. Rotating disc electrode analysis of WiSE degradation and Zn plating/deplating suggest a solid electrolyte interphase (SEI) layer dominates. Butler-Volmer kinetics and Koutecky-Levich mass-transfer are of secondary importance. Measurements of chemical potential reveal that bulk solvation of H2O (in KAc or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) WiSE) is insignificant compared to SEI blocking. Zinc cycling in KAc WiSE with practical rates (~0.3 to 8.0 mA/cm2) and areal capacities (>20 mAh/cm2) shows dendrites are less prominent than in KOH, but the SEI layer suppresses the electrochemical reaction too much for commercial feasibility. Dilution or convection of the WiSE alleviates the SEI blocking effects. Cu substrate shows good Zn adhesion, but Ti, Sn, and Ni show poor adhesion. Cathodes made with chevrel (Mo6S8) reversibly intercalate Zn2+ to form a novel battery technology, but yield <1.0 V cell voltage. Cathodes made with zinc-containing Prussian blue analogues (ZnHCF or ZnMnHCF) yield a voltage near 2.0 V but appear incompatible with cycling in the present KAc WiSE formulation. Future research directions for KAc WiSE are proposed to focus on SEI dynamics and Prussian blue compatibility\",\"PeriodicalId\":509718,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad5769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
盐包水型电解质(WiSE)有望成为低火灾风险的高压电池技术。在此,我们评估了在商业相关条件下用于锌离子电池的醋酸钾(KAc)WiSE。对 WiSE 降解和锌电镀/脱镀的旋转圆盘电极分析表明,固体电解质相间层(SEI)占主导地位。Butler-Volmer 动力学和 Koutecky-Levich 质量转移是次要的。化学势测量结果表明,与 SEI 阻滞相比,H2O 的大量溶解(在 KAc 或双三氟甲磺酰亚胺锂(LiTFSI)WiSE 中)是微不足道的。在 KAc WiSE 中以实用速率(约 0.3 至 8.0 mA/cm2)和平均容量(大于 20 mAh/cm2)进行锌循环时,树枝状突起没有在 KOH 中那么突出,但 SEI 层对电化学反应的抑制太大,不具备商业可行性。WiSE 的稀释或对流可减轻 SEI 的阻碍作用。铜基板显示出良好的锌附着性,但钛、锡和镍的附着性较差。使用 Chevrel(Mo6S8)制成的阴极可逆地插层 Zn2+,形成了一种新型电池技术,但电池电压小于 1.0 V。用含锌普鲁士蓝类似物(ZnHCF 或 ZnMnHCF)制成的阴极可产生接近 2.0 V 的电压,但似乎与目前 KAc WiSE 配方中的循环不兼容。我们提出了 KAc WiSE 的未来研究方向,重点是 SEI 动力学和普鲁士蓝兼容性。
Electrochemical and Cycle Analysis of Water-in-Salt K-Acetate Electrolyte Zn-Ion Batteries Under Commercially-Relevant Conditions
Water-in-salt electrolyte (WiSE) promises high-voltage battery technology with low fire risk. Here we assess potassium acetate (KAc) WiSE for Zn ion batteries under commercially relevant conditions. Rotating disc electrode analysis of WiSE degradation and Zn plating/deplating suggest a solid electrolyte interphase (SEI) layer dominates. Butler-Volmer kinetics and Koutecky-Levich mass-transfer are of secondary importance. Measurements of chemical potential reveal that bulk solvation of H2O (in KAc or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) WiSE) is insignificant compared to SEI blocking. Zinc cycling in KAc WiSE with practical rates (~0.3 to 8.0 mA/cm2) and areal capacities (>20 mAh/cm2) shows dendrites are less prominent than in KOH, but the SEI layer suppresses the electrochemical reaction too much for commercial feasibility. Dilution or convection of the WiSE alleviates the SEI blocking effects. Cu substrate shows good Zn adhesion, but Ti, Sn, and Ni show poor adhesion. Cathodes made with chevrel (Mo6S8) reversibly intercalate Zn2+ to form a novel battery technology, but yield <1.0 V cell voltage. Cathodes made with zinc-containing Prussian blue analogues (ZnHCF or ZnMnHCF) yield a voltage near 2.0 V but appear incompatible with cycling in the present KAc WiSE formulation. Future research directions for KAc WiSE are proposed to focus on SEI dynamics and Prussian blue compatibility