{"title":"带弯曲受压构件的张拉结构变形分析","authors":"Hannes Jahn, Valter Böhm, Lena Zentner","doi":"10.1007/s11012-024-01833-y","DOIUrl":null,"url":null,"abstract":"<div><p>Tensegrity structures are prestressed structures consisting of compressed members connected by prestressed tensioned members. Due to their properties, such as flexibility and lightness, mobile robots based on these structures are an attractive subject of research and are suitable for space applications. In this work, a mobile robot based on a tensegrity structure with two curved members connected by eight tensioned strings is analyzed in terms of deformation in the curved members. Further, the difference in locomotion trajectory between the undeformed and deformed structure after the prestress is analyzed. For that, the theory of large deflections of rod-like structures is used. To determine the relationship between acting forces and the deformation, the structure is optimized using minimization algorithms in Python. The results are validated by parameter studies in FEM. The analysis shows that the distance between the two curved members significantly influences the structure’s locomotion. It can be said that the deformation of the components significantly influences the locomotion of tensegrity structures and should be considered when analyzing highly compliant structures.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1369 - 1380"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01833-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of deformation in tensegrity structures with curved compressed members\",\"authors\":\"Hannes Jahn, Valter Böhm, Lena Zentner\",\"doi\":\"10.1007/s11012-024-01833-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tensegrity structures are prestressed structures consisting of compressed members connected by prestressed tensioned members. Due to their properties, such as flexibility and lightness, mobile robots based on these structures are an attractive subject of research and are suitable for space applications. In this work, a mobile robot based on a tensegrity structure with two curved members connected by eight tensioned strings is analyzed in terms of deformation in the curved members. Further, the difference in locomotion trajectory between the undeformed and deformed structure after the prestress is analyzed. For that, the theory of large deflections of rod-like structures is used. To determine the relationship between acting forces and the deformation, the structure is optimized using minimization algorithms in Python. The results are validated by parameter studies in FEM. The analysis shows that the distance between the two curved members significantly influences the structure’s locomotion. It can be said that the deformation of the components significantly influences the locomotion of tensegrity structures and should be considered when analyzing highly compliant structures.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 9\",\"pages\":\"1369 - 1380\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-024-01833-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01833-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01833-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Analysis of deformation in tensegrity structures with curved compressed members
Tensegrity structures are prestressed structures consisting of compressed members connected by prestressed tensioned members. Due to their properties, such as flexibility and lightness, mobile robots based on these structures are an attractive subject of research and are suitable for space applications. In this work, a mobile robot based on a tensegrity structure with two curved members connected by eight tensioned strings is analyzed in terms of deformation in the curved members. Further, the difference in locomotion trajectory between the undeformed and deformed structure after the prestress is analyzed. For that, the theory of large deflections of rod-like structures is used. To determine the relationship between acting forces and the deformation, the structure is optimized using minimization algorithms in Python. The results are validated by parameter studies in FEM. The analysis shows that the distance between the two curved members significantly influences the structure’s locomotion. It can be said that the deformation of the components significantly influences the locomotion of tensegrity structures and should be considered when analyzing highly compliant structures.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.