{"title":"磁场下卡波聚屈服应力 Fe3O4 纳米流体的瑞利-贝纳尔对流:实验研究与 ANN 建模","authors":"M. A. Hassan, Rishikesh Kumar, N. H. Khan","doi":"10.1007/s10765-024-03390-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive experimental investigation aimed at elucidating the influence of magnetic fields, nanoparticle concentration, and the presence of polymer on Rayleigh–Benard convection in yield stress nanofluids. The test fluid comprises Ultrez 30 polymeric powder and Iron oxide nanoparticles. Herschel–Bulkley's model is applied to capture the rheological behaviour. The concentration of both Ultrez 30 polymeric gel and Iron oxide nanoparticles varies from 0.05 % to 0.10 %. The in-house developed experimental set-up is exposed to the magnetic field in the 0 mT to 100 mT range. Without a magnetic field, heat transfer increases with the elevation of nanoparticle fraction in the fluid. However, in the presence of a magnetic field, the convection effect weakens as the nanoparticle concentration rises. Furthermore, an optimised artificial neural network (ANN) model featuring a single hidden layer with nine hidden neurons is presented to predict the Nusselt number.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rayleigh–Benard Convection of Carbopol Yield Stress Fe3O4 Nanofluids Under Magnetic Field: An Experimental Investigation and ANN Modelling\",\"authors\":\"M. A. Hassan, Rishikesh Kumar, N. H. Khan\",\"doi\":\"10.1007/s10765-024-03390-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a comprehensive experimental investigation aimed at elucidating the influence of magnetic fields, nanoparticle concentration, and the presence of polymer on Rayleigh–Benard convection in yield stress nanofluids. The test fluid comprises Ultrez 30 polymeric powder and Iron oxide nanoparticles. Herschel–Bulkley's model is applied to capture the rheological behaviour. The concentration of both Ultrez 30 polymeric gel and Iron oxide nanoparticles varies from 0.05 % to 0.10 %. The in-house developed experimental set-up is exposed to the magnetic field in the 0 mT to 100 mT range. Without a magnetic field, heat transfer increases with the elevation of nanoparticle fraction in the fluid. However, in the presence of a magnetic field, the convection effect weakens as the nanoparticle concentration rises. Furthermore, an optimised artificial neural network (ANN) model featuring a single hidden layer with nine hidden neurons is presented to predict the Nusselt number.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"45 7\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03390-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03390-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rayleigh–Benard Convection of Carbopol Yield Stress Fe3O4 Nanofluids Under Magnetic Field: An Experimental Investigation and ANN Modelling
This study presents a comprehensive experimental investigation aimed at elucidating the influence of magnetic fields, nanoparticle concentration, and the presence of polymer on Rayleigh–Benard convection in yield stress nanofluids. The test fluid comprises Ultrez 30 polymeric powder and Iron oxide nanoparticles. Herschel–Bulkley's model is applied to capture the rheological behaviour. The concentration of both Ultrez 30 polymeric gel and Iron oxide nanoparticles varies from 0.05 % to 0.10 %. The in-house developed experimental set-up is exposed to the magnetic field in the 0 mT to 100 mT range. Without a magnetic field, heat transfer increases with the elevation of nanoparticle fraction in the fluid. However, in the presence of a magnetic field, the convection effect weakens as the nanoparticle concentration rises. Furthermore, an optimised artificial neural network (ANN) model featuring a single hidden layer with nine hidden neurons is presented to predict the Nusselt number.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.