含超细铝的 AP/HTPB 推进剂燃烧行为模型

IF 1.7 4区 工程技术 Q3 CHEMISTRY, APPLIED
Kaixuan Chen, Xiaochun Xue, Yonggang Yu
{"title":"含超细铝的 AP/HTPB 推进剂燃烧行为模型","authors":"Kaixuan Chen, Xiaochun Xue, Yonggang Yu","doi":"10.1002/prep.202400049","DOIUrl":null,"url":null,"abstract":"Nano‐aluminum, renowned for its remarkable efficacy in augmenting propulsion efficiency and regressive velocity, stands out as a compelling choice for incorporation into heterogeneous propellant compositions. Nevertheless, the considerable expense of this ultrafine aluminum variant, coupled with the inherent hazards associated with conducting propellant trials, may deter extensive allocation of resources and efforts towards the intricate processes of amalgamation, molding, and comprehensive analysis of the combustion characteristics of freshly devised propellant blends. To provide theoretical support for predicting the chemical properties of nano‐Al composite propellant, we establish a numerical framework to study the combustion characteristics under the working environment of a solid rocket motor. A new five‐step kinetic mechanism is developed in this model to describe the reaction process in the gas phase while accounting for heat conduction, radiative effects, and non‐planar moving surfaces. The comparison between our theoretical work and experimental results confirms that making no distinction among Al particle sizes below 3 μm is reasonable. Finally, the effects of nano‐Al on combustion, burning rate variation, and temperature sensitivity are analyzed in detail.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for the combustion behavior of AP/HTPB propellant containing ultrafine aluminum\",\"authors\":\"Kaixuan Chen, Xiaochun Xue, Yonggang Yu\",\"doi\":\"10.1002/prep.202400049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano‐aluminum, renowned for its remarkable efficacy in augmenting propulsion efficiency and regressive velocity, stands out as a compelling choice for incorporation into heterogeneous propellant compositions. Nevertheless, the considerable expense of this ultrafine aluminum variant, coupled with the inherent hazards associated with conducting propellant trials, may deter extensive allocation of resources and efforts towards the intricate processes of amalgamation, molding, and comprehensive analysis of the combustion characteristics of freshly devised propellant blends. To provide theoretical support for predicting the chemical properties of nano‐Al composite propellant, we establish a numerical framework to study the combustion characteristics under the working environment of a solid rocket motor. A new five‐step kinetic mechanism is developed in this model to describe the reaction process in the gas phase while accounting for heat conduction, radiative effects, and non‐planar moving surfaces. The comparison between our theoretical work and experimental results confirms that making no distinction among Al particle sizes below 3 μm is reasonable. Finally, the effects of nano‐Al on combustion, burning rate variation, and temperature sensitivity are analyzed in detail.\",\"PeriodicalId\":20800,\"journal\":{\"name\":\"Propellants, Explosives, Pyrotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propellants, Explosives, Pyrotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prep.202400049\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202400049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

纳米铝因其在提高推进效率和后退速度方面的显著功效而闻名,是将其纳入异质推进剂成分的一个引人注目的选择。然而,这种超细铝变体的费用相当可观,再加上进行推进剂试验的固有危险,可能会阻碍将大量资源和精力用于混合、成型和全面分析新设计的推进剂混合物的燃烧特性等复杂过程。为了给预测纳米铝复合推进剂的化学特性提供理论支持,我们建立了一个数值框架来研究固体火箭发动机工作环境下的燃烧特性。该模型建立了一个新的五步动力学机制,用于描述气相中的反应过程,同时考虑了热传导、辐射效应和非平面运动表面。我们的理论工作与实验结果的比较证实,不区分 3 μm 以下的铝颗粒大小是合理的。最后,我们详细分析了纳米铝对燃烧、燃烧速率变化和温度敏感性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model for the combustion behavior of AP/HTPB propellant containing ultrafine aluminum
Nano‐aluminum, renowned for its remarkable efficacy in augmenting propulsion efficiency and regressive velocity, stands out as a compelling choice for incorporation into heterogeneous propellant compositions. Nevertheless, the considerable expense of this ultrafine aluminum variant, coupled with the inherent hazards associated with conducting propellant trials, may deter extensive allocation of resources and efforts towards the intricate processes of amalgamation, molding, and comprehensive analysis of the combustion characteristics of freshly devised propellant blends. To provide theoretical support for predicting the chemical properties of nano‐Al composite propellant, we establish a numerical framework to study the combustion characteristics under the working environment of a solid rocket motor. A new five‐step kinetic mechanism is developed in this model to describe the reaction process in the gas phase while accounting for heat conduction, radiative effects, and non‐planar moving surfaces. The comparison between our theoretical work and experimental results confirms that making no distinction among Al particle sizes below 3 μm is reasonable. Finally, the effects of nano‐Al on combustion, burning rate variation, and temperature sensitivity are analyzed in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Propellants, Explosives, Pyrotechnics
Propellants, Explosives, Pyrotechnics 工程技术-工程:化工
CiteScore
4.20
自引率
16.70%
发文量
235
审稿时长
2.7 months
期刊介绍: Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year. PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信