将均匀的分子级碳精确集成到多孔二氧化硅框架中,为高性能锂离子电池提供协同电化学活化功能

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2024-06-12 DOI:10.1002/eom2.12469
Seungbae Oh, Xue Dong, Chaeheon Woo, Xiaojie Zhang, Yeongjin Kim, Kyung Hwan Choi, Bom Lee, Ji-Hee Kim, Jinsu Kang, Hyeon-Seok Bang, Jiho Jeon, Hyung-Suk Oh, Hak Ki Yu, Junyoung Mun, Jae-Young Choi
{"title":"将均匀的分子级碳精确集成到多孔二氧化硅框架中,为高性能锂离子电池提供协同电化学活化功能","authors":"Seungbae Oh,&nbsp;Xue Dong,&nbsp;Chaeheon Woo,&nbsp;Xiaojie Zhang,&nbsp;Yeongjin Kim,&nbsp;Kyung Hwan Choi,&nbsp;Bom Lee,&nbsp;Ji-Hee Kim,&nbsp;Jinsu Kang,&nbsp;Hyeon-Seok Bang,&nbsp;Jiho Jeon,&nbsp;Hyung-Suk Oh,&nbsp;Hak Ki Yu,&nbsp;Junyoung Mun,&nbsp;Jae-Young Choi","doi":"10.1002/eom2.12469","DOIUrl":null,"url":null,"abstract":"<p>The development of advanced anode materials for lithium-ion batteries that can provide high specific capacity and stable cycle performance is of paramount importance. This study presents a novel approach for synthesizing molecular-level homogeneous carbon integration to porous SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>@C NPs) tailored to enhance their electrochemical activities for lithium-ion battery anode. By varying the ratio of the precursors for sol–gel reaction of (phenyltrimethoxysilane (PTMS) and tetraethoxysilane (TEOS)), the carbon content and porosity within SiO<sub>2</sub>@C NPs is precisely controlled. With a 4:6 PTMS and TEOS ratio, the SiO<sub>2</sub>@C NPs exhibit a highly mesoporous structure with thin carbon and the partially reduced SiO<sub><i>x</i></sub> phases, which balances ion and charge transfer for electrochemical activation of SiO<sub>2</sub>@C NPs resulting remarkable capacity and cycle performance. This study offers a novel strategy for preparing affordable high capacity SiO<sub>2</sub>-based advanced anode materials with enhanced electrochemical performances.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12469","citationCount":"0","resultStr":"{\"title\":\"Precision integration of uniform molecular-level carbon into porous silica framework for synergistic electrochemical activation in high-performance lithium–ion batteries\",\"authors\":\"Seungbae Oh,&nbsp;Xue Dong,&nbsp;Chaeheon Woo,&nbsp;Xiaojie Zhang,&nbsp;Yeongjin Kim,&nbsp;Kyung Hwan Choi,&nbsp;Bom Lee,&nbsp;Ji-Hee Kim,&nbsp;Jinsu Kang,&nbsp;Hyeon-Seok Bang,&nbsp;Jiho Jeon,&nbsp;Hyung-Suk Oh,&nbsp;Hak Ki Yu,&nbsp;Junyoung Mun,&nbsp;Jae-Young Choi\",\"doi\":\"10.1002/eom2.12469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of advanced anode materials for lithium-ion batteries that can provide high specific capacity and stable cycle performance is of paramount importance. This study presents a novel approach for synthesizing molecular-level homogeneous carbon integration to porous SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>@C NPs) tailored to enhance their electrochemical activities for lithium-ion battery anode. By varying the ratio of the precursors for sol–gel reaction of (phenyltrimethoxysilane (PTMS) and tetraethoxysilane (TEOS)), the carbon content and porosity within SiO<sub>2</sub>@C NPs is precisely controlled. With a 4:6 PTMS and TEOS ratio, the SiO<sub>2</sub>@C NPs exhibit a highly mesoporous structure with thin carbon and the partially reduced SiO<sub><i>x</i></sub> phases, which balances ion and charge transfer for electrochemical activation of SiO<sub>2</sub>@C NPs resulting remarkable capacity and cycle performance. This study offers a novel strategy for preparing affordable high capacity SiO<sub>2</sub>-based advanced anode materials with enhanced electrochemical performances.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12469\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发可提供高比容量和稳定循环性能的先进锂离子电池负极材料至关重要。本研究提出了一种新方法,用于合成分子级同质碳与多孔二氧化硅纳米颗粒(SiO2@C NPs)的整合,以提高其在锂离子电池负极中的电化学活性。通过改变溶胶-凝胶反应前驱体(苯基三甲氧基硅烷(PTMS)和四乙氧基硅烷(TEOS))的比例,可以精确控制 SiO2@C NPs 中的碳含量和孔隙率。当 PTMS 和 TEOS 的比例为 4:6 时,SiO2@C NPs 呈现出具有薄碳和部分还原 SiOx 相的高度介孔结构,从而平衡了 SiO2@C NPs 电化学活化过程中的离子和电荷转移,使其具有显著的容量和循环性能。这项研究为制备经济实惠、电化学性能更强的高容量 SiO2 基先进正极材料提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Precision integration of uniform molecular-level carbon into porous silica framework for synergistic electrochemical activation in high-performance lithium–ion batteries

Precision integration of uniform molecular-level carbon into porous silica framework for synergistic electrochemical activation in high-performance lithium–ion batteries

The development of advanced anode materials for lithium-ion batteries that can provide high specific capacity and stable cycle performance is of paramount importance. This study presents a novel approach for synthesizing molecular-level homogeneous carbon integration to porous SiO2 nanoparticles (SiO2@C NPs) tailored to enhance their electrochemical activities for lithium-ion battery anode. By varying the ratio of the precursors for sol–gel reaction of (phenyltrimethoxysilane (PTMS) and tetraethoxysilane (TEOS)), the carbon content and porosity within SiO2@C NPs is precisely controlled. With a 4:6 PTMS and TEOS ratio, the SiO2@C NPs exhibit a highly mesoporous structure with thin carbon and the partially reduced SiOx phases, which balances ion and charge transfer for electrochemical activation of SiO2@C NPs resulting remarkable capacity and cycle performance. This study offers a novel strategy for preparing affordable high capacity SiO2-based advanced anode materials with enhanced electrochemical performances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信